Chapter 14: Problem 131
In theory, all reactions are reversible, but in practice, some are not. Explain why.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 14: Problem 131
In theory, all reactions are reversible, but in practice, some are not. Explain why.
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe solubility of \(\mathrm{PbI}_{2}\) in water at \(25^{\circ} \mathrm{C}\) is \(1.52 \times 10^{-3}\) M. How many grams of \(\mathrm{PbI}_{2}\) will dissolve in \(2.50 \times 10^{6}\) gallons of water at \(25^{\circ} \mathrm{C}\) ?
Suppose we have an equilibrium mixture of reactants and products for the reaction \(\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \rightleftarrows \mathrm{PCl}_{5}(g)\) Predict the direction in which the reaction will shift when: (a) Chlorine \(\left(\mathrm{Cl}_{2}\right)\) gas is added. (b) Chlorine gas is removed. (c) \(\mathrm{PCl}_{5}\) is added. (d) \(\mathrm{PCl}_{3}\) is removed. (e) \(\mathrm{H}_{2}\) gas is added. (Assume the \(\mathrm{H}_{2}\) does not react with any reactant or product.)
When the reaction \(\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g)\) is run at \(2000^{\circ} \mathrm{C}\), appreciable amounts of reactants and product are present at equilibrium. (a) A sealed 2.00-L container at \(2000{ }^{\circ} \mathrm{C}\) is filled with \(1.00\) mole of \(\mathrm{NO}(g)\) and nothing else. At that moment, which reaction is faster, forward or reverse? Justify your answer. (b) At equilibrium, the concentration of \(\mathrm{NO}(g)\) is \(0.0683 \mathrm{M}\) and the concentration of \(\mathrm{N}_{2}(g)\) is \(0.2159 \mathrm{M}\). What is the value of \(K_{\mathrm{eq}}\) at \(2000^{\circ} \mathrm{C} ?\)
Would the value you obtain for \(K_{\text {eq }}\) for a reaction depend on the initial concentrations of reactants and products you use? Explain your answer.
Which of the following reactions is described by the equilibrium constant expression \(K_{\mathrm{eq}}=\frac{[\mathrm{A}]^{2} \times[\mathrm{B}]^{3}}{[\mathrm{C}]^{3} \times[\mathrm{D}]^{2}}\) (a) \(\mathrm{A}_{2}+\mathrm{B}_{3} \rightleftarrows \mathrm{C}_{3}+\mathrm{D}_{2}\) (b) \(2 \mathrm{~A}+3 \mathrm{~B} \rightleftarrows 3 \mathrm{C}+2 \mathrm{D}\) (c) \(3 \mathrm{C}+2 \mathrm{D} \rightleftarrows 2 \mathrm{~A}+3 \mathrm{~B}\) (d) \(A^{2}+B^{3} \rightleftarrows C^{3}+D^{2}\) (e) \(2 \mathrm{C}+3 \mathrm{D} \rightleftarrows 3 \mathrm{~A}+2 \mathrm{~B}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.