Chapter 13: Problem 138
You have two rigid gas cylinders. Gas cylinder A has a volume of \(48.2 \mathrm{~L}\) and contains \(\mathrm{N}_{2}(g)\) at 8.35 atm at 25 . \(\mathrm{C}\). Gas cylinder \(\mathrm{B}\) has a volume of \(22.0 \mathrm{~L}\) and contains \(\mathrm{He}(g)\) at \(25 \quad \mathrm{C}\). When the two cylinders are connected with a valve of negligible volume and the gases are mixed, the pressure in each cylinder becomes 8.71 atm. (Assume no reaction when the gases are mixed.) a. How many nitrogen molecules are present? b. What is the total number of moles of \(\mathrm{N}_{2}(g)\) and \(\mathrm{He}(g)\) present after the gases are mixed? c. What was the beginning pressure of cylinder B containing only the \(\mathrm{He}(g)\) (i.e., before the valve was connected)? d. Think about the \(\operatorname{He}(g)\) before and after the cylinders were connected. Graph the relationship between pressure and volume (without numbers) for the \(\mathrm{He}(g)\) showing this change, and explain your answer, making sure to address the variables \(P, V, n,\) and \(T\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.