Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

If 0.214 mole of argon gas occupies a volume of \(652 \mathrm{~mL}\) at a particular temperature and pressure, what volume would 0.375 mole of argon occupy under the same conditions?

Short Answer

Expert verified
0.375 mol of argon would occupy approximately 1143 mL volume under the same conditions as the initial moles of argon. This is calculated using the direct proportion formula, \(V_1/N_1 = V_2/N_2\), where V₁ and N₁ are the initial volume and moles, and V₂ and N₂ are the final volume and moles.

Step by step solution

01

Identify relevant information

We are given: - Initial moles of argon: 0.214 mol - Initial volume: 652 mL - Final moles of argon: 0.375 mol - Final volume: unknown (V₂) The pressure and temperature are constant.
02

Use the direct proportion formula

Since pressure and temperature are constant, we can use the direct proportion formula: \(V_1/N_1 = V_2/N_2\) where V₁ and N₁ are the initial volume and moles, and V₂ and N₂ are the final volume and moles.
03

Plug in given values

Now, substitute the given values into the formula: \(652 \mathrm{~mL} / 0.214 \textrm{ mol} = V_2 / 0.375 \textrm{ mol}\)
04

Solve for the final volume

To find the final volume V₂, multiply both sides of the equation by 0.375 mol: \(V_2 = \frac{(652 \mathrm{~mL})(0.375 \textrm{ mol})}{0.214 \textrm{ mol}}\)
05

Calculate the final answer

Multiply and divide the numbers to find V₂: \(V_2 = \frac{(652 \mathrm{~mL})(0.375 \textrm{ mol})}{0.214 \textrm{ mol}} \approx 1142.99 \mathrm{~mL}\) So, 0.375 mol of argon would occupy approximately 1143 mL volume under the same conditions.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Mole Concept
The mole is a fundamental unit in chemistry that helps in quantifying the amount of a substance. One mole is equivalent to Avogadro's number, which is approximately \(6.022 \times 10^{23}\) particles, whether they be atoms, molecules, ions, or electrons. This concept allows chemists to count entities at the microscopic level using macroscopic measurements.
  • Definition: A mole is 1 mole of any substance holds exactly the number of units equivalent to Avogadro's number.
  • Relevance: It enables conversion between the microscopic world (individual particles) and the macroscopic world (grams, liters).
In our problem, the concept of mole is used to relate the number of moles of argon gas to the volume it occupies. Since gases behave in predictable ways under standard conditions, knowing how many moles of gas you have lets you predict other properties, such as volume.
Volume Calculation
Volume calculation in chemistry often involves gases, which typically occupy the container they are in. Different gases at identical temperature and pressure occupy the same volume due to a principle known as Avogadro's Law, which states that equal volumes of all gases, at the same temperature and pressure, have the same number of molecules.In the given exercise, to find the volume of argon gas when its amount changes from 0.214 moles to 0.375 moles but the conditions stay constant, we use a simple volume calculation. The formula used is a proportion based on the known volume for a given amount of substance:- Start with the volume given initially (652 mL for 0.214 mol)- Apply the proportion formula to find the new volume: \[ V_2 = \frac{V_1 \times N_2}{N_1} \]Where:- \( V_1 \) is the initial volume, 652 mL.- \( N_1 \) is the initial moles, 0.214 mol.- \( N_2 \) is the final moles, 0.375 mol.
Direct Proportion in Chemistry
Direct proportion is a relationship between two quantities in which they increase or decrease at the same rate. When one quantity doubles, so does the other. In the context of gas laws, under constant temperature and pressure, the volume of a gas is directly proportional to the number of moles.
  • Definition: Two quantities are directly proportional if, by multiplying one by a factor, the other is multiplied by the same factor.
  • Examples: Both average speed and distance in motion equations display direct relationships.
In our exercise, the problem revolves around the direct proportion of volume to the number of moles of argon gas. The formula \( \frac{V_1}{N_1} = \frac{V_2}{N_2} \) makes it straightforward to compute unknowns when given such a relationship in chemistry and is essential when dealing with ideal gases in fixed conditions. Thus, if the moles increased by a given ratio, the volume must also increase by the same ratio, provided that the pressure and temperature remain unchanged.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Ammonia and gaseous hydrogen chloride combine to form ammonium chloride $$ \mathrm{NH}_{3}(g)+\mathrm{HCl}(g) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(s) $$ If 4.21 L of \(\mathrm{NH}_{3}(g)\) at 27 ' \(\mathrm{C}\) and 1.02 atm is combined with \(5.35 \mathrm{~L}\) of \(\mathrm{HCl}(g)\) at 26 ' \(\mathrm{C}\) and 0.998 atm, what mass of \(\mathrm{NH}_{4} \mathrm{Cl}(s)\) will be produced? Which gas is the limiting reactant? Which gas is present in excess?

If 3.25 moles of argon gas occupies a volume of \(100 .\) L at a particular temperature and pressure, what volume does 14.15 moles of argon occupy under the same conditions?

Concentrated hydrogen peroxide solutions are explosively decomposed by traces of transition metal ions (such as Mn or Fe ): $$ 2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g) $$ What volume of pure \(\mathrm{O}_{2}(g),\) collected at \(27 \mathrm{C}\) and 764 torr, would be generated by decomposition of \(125 \mathrm{~g}\) of a \(50.0 \%\) by mass hydrogen peroxide solution?

Which of the following statements is(are) true? a. If the number of moles of a gas is doubled, the volume will double, assuming the pressure and temperature of the gas remain constant. b. If the temperature of a gas increases from 25 ' \(\mathrm{C}\) to \(50 \mathrm{C},\) the volume of the gas would double, assuming that the pressure and the number of moles of gas remain constant. c. The device that measures atmospheric pressure is called a barometer. d. If the volume of a gas decreases by one-half, then the pressure would double, assuming that the number of moles and the temperature of the gas remain constant.

A sample of a gas at 0.780 atm occupies a volume of \(0.501 \mathrm{~L}\). If the temperature remains constant, what will be the new pressure if the volume increases to \(0.794 \mathrm{~L} ?\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free