Chapter 13: Problem 112
Carbon dioxide gas, saturated with water vapor, can be produced by the addition of aqueous acid to calcium carbonate. $$ \mathrm{CaCO}_{3}(s)+2 \mathrm{H}^{+}(a q) \rightarrow \mathrm{Ca}^{2+}(a q)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g) $$ How many moles of \(\mathrm{CO}_{2}(g),\) collected at \(60 .^{\circ} \mathrm{C}\) and 774 torr total pressure, are produced by the complete reaction of \(10.0 \mathrm{~g}\) of \(\mathrm{CaCO}_{3}\) with acid? What volume does this wet \(\mathrm{CO}_{2}\) occupy? What volume would the \(\mathrm{CO}_{2}\) occupy at 774 torr if a desiccant (a chemical drying agent) were added to remove the water? (The vapor pressure of water at \(60 .\) C is \(149.4 \mathrm{~mm} \mathrm{Hg}\).)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.