Problem 1
What is a measurement? Why does a measurement always consist of two parts, and what are those parts?
Problem 2
Write, in your own words, the steps involved in expressing a number in standard scientific notation.
Problem 3
When the number \(1.521 \times 10^{3}\) is written in ordinary decimal notation, it is expressed as _________.
Problem 4
When expressed in standard scientific notation, numbers greater than 1 will have (positive/negative) exponents, whereas numbers less than 1 will have (positive/negative) exponents.
Problem 5
Write each of the following as an "ordinary" decimal number. a. \(6.235 \times 10^{-2}\) b. \(7.229 \times 10^{3}\) c. \(5.001 \times 10^{-6}\) d. \(8.621 \times 10^{4}\)
Problem 6
For each of the following numbers, if the number is rewritten in standard scientific notation, will the exponent of the power of 10 be positive or negative? a. 1,942,200 b. 15 c. 0.151 d. 0.0000000721
Problem 7
Express each of the following numbers in standard scientific notation. a. 0.005219 b. 5219 c. 6,199,291 d. 0.1973 e. 93,000,000 f. \(72.41 \times 10^{-2}\) g. \(0.007241 \times 10^{-5}\) h. 1.00
Problem 8
Express each of the following numbers in standard scientific notation. a. 9,367,421 b. 7241 c. 0.0005519 d. 5.408 e. \(6.24 \times 10^{2}\) f. \(6319 \times 10^{-2}\) g. 0.000000007215 h. 0.721
Problem 10
Express each of the following as an "ordinary" decimal number. a. \(7.327 \times 10^{-4}\) b. \(1.51 \times 10^{2}\) c. \(1 \times 10^{0}\) d. \(5.399 \times 10^{-4}\) e. \(0.221 \times 10^{3}\) f. \(7.83 \times 10^{-2}\) g. \(1218 \times 10^{-4}\) h. \(2.918 \times 10^{-4}\) i. \(7.251 \times 10^{3}\) j. \(1.911 \times 10^{-9}\) k. \(9.951 \times 10^{2}\) 1\. \(9.951 \times 10^{-2}\)
Problem 11
Write each of the following numbers in standard scientific notation. a. \(4381 \times 10^{-4}\) b. \(98,784 \times 10^{4}\) c. \(78.21 \times 10^{2}\) d. \(9.871 \times 10^{-4}\) e. \(0.009871 \times 10^{7}\) f. \(42,221 \times 10^{4}\) g. \(0.00008951 \times 10^{6}\) h. \(0.00008951 \times 10^{-6}\)