Problem 14
What volume of pool water is needed to generate \(1.000 \mathrm{~L}\) of \(\mathrm{Cl}_{2}(\mathrm{~g})\) at standard temperature and pressure if the pool contains 4.0 ppm HOCl and the water is slightly acidic? The chemical reaction is as follows: \(\mathrm{HOCl}(\mathrm{aq})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{Cl}_{2}(\mathrm{~g})\) Assume the pool water has a density of \(1.00 \mathrm{~g} / \mathrm{mL}\).
Problem 14
If the \(\mathrm{Cl}^{-}\) ion concentration in a solution is \(2.61 \mathrm{M}\), what is the concentration of \(\mathrm{FeCl}_{3}\) ?
Problem 15
It takes \(4.667 \mathrm{~mL}\) of \(0.0997 \mathrm{M} \mathrm{HNO}_{3}\) to dissolve some solid Cu. What mass of Cu can be dissolved? \(\mathrm{Cu}+4 \mathrm{HNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}\)
Problem 15
A \(0.500 \mathrm{~m}\) solution of \(\mathrm{MgCl}_{2}\) has a freezing point of \(-2.60^{\circ} \mathrm{C}\). What is the true van't Hoff factor of this ionic compound? Why is it less than the ideal value?
Problem 16
It takes \(49.08 \mathrm{~mL}\) of \(0.877 \mathrm{M} \mathrm{NH}_{3}\) to dissolve some solid \(\mathrm{AgCl}\). What mass of \(\mathrm{AgCl}\) can be dissolved? \(\mathrm{AgCl}(\mathrm{s})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}(\mathrm{aq})\)
Problem 16
The osmotic pressure of a 0.050 M LiCl solution at \(25.0^{\circ} \mathrm{C}\) is 2.26 atm. What is the true van't Hoff factor of this ionic compound? Why is it less than the ideal value?
Problem 17
Order these solutions in order of increasing boiling point, assuming an ideal van't Hoff factor for each: \(0.10 \mathrm{~m} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, 0.06 \mathrm{~m} \mathrm{NaCl}, 0.4 \mathrm{~m} \mathrm{Au}\left(\mathrm{NO}_{3}\right)_{3},\) and \(0.4 \mathrm{~m} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}\).
Problem 17
What mass of \(3.00 \% \mathrm{H}_{2} \mathrm{O}_{2}\) is needed to produce \(66.3 \mathrm{~g}\) of \(\mathrm{O}_{2}(\mathrm{~g})\) ? \(2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\ell)+\mathrm{O}_{2}(\mathrm{~g})\)
Problem 18
A \(0.75 \%\) solution of \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) is used to precipitate \(\mathrm{Ca}^{2+}\) ions from solution. What mass of solution is needed to precipitate \(40.7 \mathrm{~L}\) of solution with a concentration of \(0.0225 \mathrm{M} \mathrm{Ca}^{2+}(\mathrm{aq}) ?\) \(\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{Ca}^{2+}(\mathrm{aq}) \rightarrow \mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{Na}^{+}(\mathrm{aq})\)
Problem 18
Order these solutions in order of decreasing osmotic pressure, assuming an ideal van't Hoff factor: 0.1 \(\mathrm{M} \mathrm{HCl}, 0.1 \mathrm{M} \mathrm{CaCl}_{2}, 0.05 \mathrm{M} \mathrm{MgBr}_{2},\) and \(0.07 \mathrm{M} \mathrm{Ga}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{3}\).