Chapter 24: Problem 8
What are the limitations of valence bond theory?
Chapter 24: Problem 8
What are the limitations of valence bond theory?
All the tools & learning materials you need for study success - in one app.
Get started for freeDiscuss the salient features of ligand field theory. How does it differ from crystal field theory?
How does crystal field theory differ from valence bond theory?
Explain the following: (a) \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\) is paramagnetic and coloured. (b) \(\left(\mathrm{Ni}(\mathrm{CN})_{4}\right)^{2-}\) is square planar, but \(\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]^{2-}\) is tetrahedral. (c) \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\) is more stable than \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}\), while \(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) is more stable than \(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\) (d) Octahedral complexes are less stable than the square planar complexes. (e) \(\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}\) is a low-spin complex, but \(\left[\mathrm{CoF}_{6}\right]^{3-}\) is high-spin complex.
Draw molecular orbital diagram of a square planar complex showing only \(\pi\) -bonding.
Discuss the factors affecting the magnitude of crystal field splitting.
What do you think about this solution?
We value your feedback to improve our textbook solutions.