Chapter 24: Problem 17
How does ligand field theory describe the origin of charge transfer spectra in coordination complexes.
Chapter 24: Problem 17
How does ligand field theory describe the origin of charge transfer spectra in coordination complexes.
All the tools & learning materials you need for study success - in one app.
Get started for freeDiscuss the crystal field splitting in a square planar complex.
Explain the following: (a) \(\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\) is paramagnetic and coloured. (b) \(\left(\mathrm{Ni}(\mathrm{CN})_{4}\right)^{2-}\) is square planar, but \(\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]^{2-}\) is tetrahedral. (c) \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}\) is more stable than \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}\), while \(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}\) is more stable than \(\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}\) (d) Octahedral complexes are less stable than the square planar complexes. (e) \(\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}\) is a low-spin complex, but \(\left[\mathrm{CoF}_{6}\right]^{3-}\) is high-spin complex.
Discuss the factors affecting the magnitude of crystal field splitting.
Discuss Sidgwick's concept of effective atomic number with the help of suitable example.
Discuss the main points of Werner theory. What is the significance?
What do you think about this solution?
We value your feedback to improve our textbook solutions.