Chapter 5: Problem 21
The volume of a gas is \(5.80 \mathrm{~L}\), measured at 1.00 atm. What is the pressure of the gas in \(\mathrm{mmHg}\) if the volume is changed to \(9.65 \mathrm{~L} ?\) (The temperature remains constant.)
Chapter 5: Problem 21
The volume of a gas is \(5.80 \mathrm{~L}\), measured at 1.00 atm. What is the pressure of the gas in \(\mathrm{mmHg}\) if the volume is changed to \(9.65 \mathrm{~L} ?\) (The temperature remains constant.)
All the tools & learning materials you need for study success - in one app.
Get started for freeA quantity of \(0.225 \mathrm{~g}\) of a metal \(\mathrm{M}\) (molar mass \(=\) \(27.0 \mathrm{~g} / \mathrm{mol}\) ) liberated \(0.303 \mathrm{~L}\) of molecular hydrogen (measured at \(17^{\circ} \mathrm{C}\) and \(741 \mathrm{mmHg}\) ) from an excess of hydrochloric acid. Deduce from these data the corresponding equation and write formulas for the oxide and sulfate of \(\mathrm{M}\).
A sample of air contains only nitrogen and oxygen gases whose partial pressures are 0.80 atm and 0.20 atm, respectively. Calculate the total pressure and the mole fractions of the gases.
The boiling point of liquid nitrogen is \(-196^{\circ} \mathrm{C}\). On the basis of this information alone, do you think nitrogen is an ideal gas?
A sample of zinc metal is allowed to react completely with an excess of hydrochloric acid: $$\mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \longrightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)$$ The hydrogen gas produced is collected over water at \(25.0^{\circ} \mathrm{C}\) using an arrangement similar to that shown in Figure \(5.14 .\) The volume of the gas is \(7.80 \mathrm{~L},\) and the atmospheric pressure is \(0.980 \mathrm{~atm} .\) Calculate the amount of zinc metal in grams consumed in the reaction. (Vapor pressure of water at \(25^{\circ} \mathrm{C}=\) \(23.8 \mathrm{mmHg} .)\)
A \(2.5-\mathrm{L}\) flask at \(15^{\circ} \mathrm{C}\) contains a mixture of three gases, \(\mathrm{N}_{2},\) He, and \(\mathrm{Ne},\) at partial pressures of \(0.32 \mathrm{~atm}\) for \(\mathrm{N}_{2}, 0.15 \mathrm{~atm}\) for \(\mathrm{He},\) and \(0.42 \mathrm{~atm}\) for Ne. (a) Calculate the total pressure of the mixture. (b) Calculate the volume in liters at STP occupied by He and Ne if the \(\mathrm{N}_{2}\) is removed selectively.
What do you think about this solution?
We value your feedback to improve our textbook solutions.