Chapter 21: Problem 37
Define nuclear fission, nuclear chain reaction, and critical mass.
Chapter 21: Problem 37
Define nuclear fission, nuclear chain reaction, and critical mass.
All the tools & learning materials you need for study success - in one app.
Get started for freeComplete these nuclear equations and identify \(X\) in each case: (a) \({ }^{135}{ }_{53} \mathrm{I} \longrightarrow{ }_{54}^{135} \mathrm{Xe}+\mathrm{X}\) (b) \({ }_{19}^{40} \mathrm{~K} \longrightarrow{ }_{-1}^{0} \beta+\mathrm{X}\) (c) \({ }_{27}^{59} \mathrm{Co}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{25}^{56} \mathrm{Mn}+\mathrm{X}\) (d) \({ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{40}^{99} \mathrm{Zr}+{ }_{52}^{135} \mathrm{Te}+2 \mathrm{X}\)
Explain why achievement of nuclear fusion in the laboratory requires a temperature of about 100 million degrees Celsius, which is much higher than that in the interior of the sun (15 million degrees Celsius).
Write balanced nuclear equations for these reactions and identify \(\mathrm{X}:\) (a) \(\mathrm{X}(\mathrm{p}, \alpha){ }_{6}^{12} \mathrm{C},\) (b) \({ }_{13}^{27} \mathrm{Al}(\mathrm{d}, \alpha) \mathrm{X}\) (c) \({ }_{25}^{55} \mathrm{Mn}(\mathrm{n}, \gamma) \mathrm{X}\)
A freshly isolated sample of \(90 \mathrm{Y}\) was found to have an activity of \(9.8 \times 10^{5}\) disintegrations per minute at 1: 00 P.M. on December \(3,2000 .\) At 2: 15 P.M. on December \(17,2000,\) its activity was redetermined and found to be \(2.6 \times 10^{4}\) disintegrations per minute. Calculate the half-life of \(90 \mathrm{Y}\).
Fill in the blanks in these radioactive decay series: (a) \(^{232} \mathrm{Th} \stackrel{\alpha}{\longrightarrow}\) _______ \(\stackrel{\beta}{\longrightarrow}\) ________ \(\stackrel{\beta}{\longrightarrow}{ }^{228} \mathrm{Th}\) (b) \({ }^{235} \mathrm{U} \stackrel{\alpha}{\longrightarrow}\) ________ \(\stackrel{\beta}{\longrightarrow}\) _________ \(\stackrel{\alpha}{\longrightarrow}^{227} \mathrm{Ac}\) (c) _______ \(\stackrel{\alpha}{\longrightarrow}{ }^{233} \mathrm{~Pa} \stackrel{\beta}{\longrightarrow}\) ___________ \(\stackrel{\alpha}{\longrightarrow}\) ________.
What do you think about this solution?
We value your feedback to improve our textbook solutions.