Chapter 21: Problem 31
What is the difference between radioactive decay and nuclear transmutation?
Chapter 21: Problem 31
What is the difference between radioactive decay and nuclear transmutation?
All the tools & learning materials you need for study success - in one app.
Get started for freeBismuth-214 is an \(\alpha\) -emitter with a half-life of 19.7 min. A 5.26 -mg sample of the isotope is placed in a sealed, evacuated flask of volume \(20.0 \mathrm{~mL}\) at \(40^{\circ} \mathrm{C}\). Assuming that all the \(\alpha\) particles generated are converted to helium gas and that the other decay product is nonradioactive, calculate the pressure (in \(\mathrm{mmHg}\) ) inside the flask after 78.8 min. Use 214 amu for the atomic mass of bismuth.
Nuclear waste disposal is one of the major concerns of the nuclear industry. In choosing a safe and stable environment to store nuclear wastes, consideration must be given to the heat released during nuclear decay. As an example, consider the \(\beta\) decay of \({ }^{90} \mathrm{Sr}\) \((89.907738 \mathrm{amu})\) $$ { }_{38}^{90} \mathrm{Sr} \longrightarrow{ }_{39}^{90} \mathrm{Y}+{ }_{-1}^{0} \beta \quad t_{\frac{1}{2}}=28.1 \mathrm{yr} $$ The \({ }^{90} \mathrm{Y}(89.907152 \mathrm{amu})\) further decays as follows: $$ { }_{39}^{90} \mathrm{Y} \longrightarrow{ }_{40}^{90} \mathrm{Zr}+{ }_{-1}^{0} \beta \quad t_{\frac{1}{2}}=64 \mathrm{~h} $$ Zirconium-90 (89.904703 amu) is a stable isotope. (a) Use the mass defect to calculate the energy released (in joules) in each of the preceding two decays. (The mass of the electron is \(5.4857 \times\) \(10^{-4}\) amu. ( b) Starting with 1 mole of \({ }^{90}\) Sr, calculate the number of moles of \(9^{9}\) Sr that will decay in a year. (c) Calculate the amount of heat released (in kilojoules) corresponding to the number of moles of \({ }^{90} \mathrm{Sr}\) decayed to \({ }^{90} \mathrm{Zr}\) in \((\mathrm{b})\)
A long-cherished dream of alchemists was to produce gold from cheaper and more abundant elements. This dream was finally realized when \({ }_{80}^{198} \mathrm{Hg}\) was converted into gold by neutron bombardment. Write a balanced equation for this reaction.
A freshly isolated sample of \(90 \mathrm{Y}\) was found to have an activity of \(9.8 \times 10^{5}\) disintegrations per minute at 1: 00 P.M. on December \(3,2000 .\) At 2: 15 P.M. on December \(17,2000,\) its activity was redetermined and found to be \(2.6 \times 10^{4}\) disintegrations per minute. Calculate the half-life of \(90 \mathrm{Y}\).
(a) What is the activity, in millicuries, of a 0.500 -g sample of \({ }_{93}^{237} \mathrm{~Np}\) ? (This isotope decays by \(\alpha\) -particle emission and has a half-life of \(2.20 \times 10^{6}\) yr.) (b) Write a balanced nuclear equation for the decay of \({ }^{237} \mathrm{~Np}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.