Chapter 21: Problem 12
Why is it preferable to use nuclear binding energy per nucleon for a comparison of the stabilities of different nuclei?
Chapter 21: Problem 12
Why is it preferable to use nuclear binding energy per nucleon for a comparison of the stabilities of different nuclei?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhy do heavy elements such as uranium undergo fission while light elements such as hydrogen and lithium undergo fusion?
The quantity of a radioactive material is often measured by its activity (measured in curies or millicuries) rather than by its mass. In a brain scan procedure, a 70 -kg patient is injected with \(20.0 \mathrm{mCi}\) of \({ }^{99 \mathrm{~m}} \mathrm{Tc}\) which decays by emitting \(\gamma\) -ray photons with a halflife of \(6.0 \mathrm{~h}\). Given that the \(\mathrm{RBE}\) of these photons is 0.98 and only two-thirds of the photons are absorbed by the body, calculate the rem dose received by the patient. Assume all of the \({ }^{99 \mathrm{~m}}\) Tc nuclei decay while in the body. The energy of a gamma photon is \(2.29 \times 10^{-14} \mathrm{~J}\).
Why is it impossible for the isotope \({ }_{2}^{2}\) He to exist?
A radioactive substance undergoes decay as: $$ \begin{array}{cc} \text { Time (days) } & \text { Mass (g) } \\ \hline 0 & 500 \\ 1 & 389 \\ 2 & 303 \\ 3 & 236 \\ 4 & 184 \\ 5 & 143 \\ 6 & 112 \end{array} $$ Calculate the first-order decay constant and the halflife of the reaction.
For each pair of elements listed, predict which one has more stable isotopes: (a) Co or \(\mathrm{Ni},\) (b) \(\mathrm{F}\) or \(\mathrm{Se}\) (c) Ag or Cd.
What do you think about this solution?
We value your feedback to improve our textbook solutions.