Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What is a coupled reaction? What is its importance in biological reactions?

Short Answer

Expert verified
A coupled reaction in biological systems is where an energy-releasing (exothermic) reaction happens simultaneously with an energy-requiring (endothermic) reaction, often using ATP hydrolysis as the exothermic reaction. This allows for the powering of processes that wouldn't otherwise occur due to energy requirements. It is fundamental to many crucial physiological processes.

Step by step solution

01

Understanding Coupled Reactions

A coupled reaction is a type of reaction in which an exothermic reaction (one that releases energy) drives an endothermic reaction (one that requires energy to proceed). Often, this involves the hydrolysis of ATP (Adenosine TriPhosphate), a molecule that stores a highly useful form of chemical energy. ATP hydrolysis is exothermic, releasing energy that can be used to power less favorable reactions.
02

Significance of Coupled Reactions in Biological Systems

Coupled reactions are extremely significant in biological systems. The energy released from exothermic reactions like ATP hydrolysis, can 'fuel' simultaneously occurring endothermic reactions, allowing them to proceed when they otherwise wouldn't. This is how cells in our bodies carry out various essential processes that require energy, such as active transport across cell membranes, operating motor proteins, and synthesizing large molecules.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Comment on the correctness of the analogy sometimes used to relate a student's dormitory room becoming untidy to an increase in entropy.

In the Mond process for the purification of nickel, carbon monoxide is reacted with heated nickel to produce \(\mathrm{Ni}(\mathrm{CO})_{4},\) which is a gas and can therefore be separated from solid impurities: $$ \mathrm{Ni}(s)+4 \mathrm{CO}(g) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(g) $$ Given that the standard free energies of formation of \(\mathrm{CO}(g)\) and \(\mathrm{Ni}(\mathrm{CO})_{4}(g)\) are \(-137.3 \mathrm{~kJ} / \mathrm{mol}\) and \(-587.4 \mathrm{~kJ} / \mathrm{mol}\), respectively, calculate the equilibrium constant of the reaction at \(80^{\circ} \mathrm{C}\). Assume that \(\Delta G_{f}^{\circ}\) is temperature independent.

A student placed \(1 \mathrm{~g}\) of each of three compounds \(\mathrm{A}\) \(\mathrm{B},\) and \(\mathrm{C}\) in a container and found that after 1 week no change had occurred. Offer some possible explanations for the fact that no reactions took place. Assume that \(\mathrm{A}, \mathrm{B},\) and \(\mathrm{C}\) are totally miscible liquids.

Find the temperatures at which reactions with the following \(\Delta H\) and \(\Delta S\) values would become spontaneous: (a) \(\Delta H=-126 \mathrm{~kJ} / \mathrm{mol}, \Delta S=84 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\) (b) \(\Delta H=-11.7 \mathrm{~kJ} / \mathrm{mol}, \Delta S=-105 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\).

The reaction \(\mathrm{NH}_{3}(g)+\mathrm{HCl}(g) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(s)\) proceeds spontaneously at \(25^{\circ} \mathrm{C}\) even though there is a decrease in the number of microstates of the system (gases are converted to a solid). Explain.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free