Chapter 18: Problem 33
What is a coupled reaction? What is its importance in biological reactions?
Chapter 18: Problem 33
What is a coupled reaction? What is its importance in biological reactions?
All the tools & learning materials you need for study success - in one app.
Get started for freeComment on the correctness of the analogy sometimes used to relate a student's dormitory room becoming untidy to an increase in entropy.
In the Mond process for the purification of nickel, carbon monoxide is reacted with heated nickel to produce \(\mathrm{Ni}(\mathrm{CO})_{4},\) which is a gas and can therefore be separated from solid impurities: $$ \mathrm{Ni}(s)+4 \mathrm{CO}(g) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(g) $$ Given that the standard free energies of formation of \(\mathrm{CO}(g)\) and \(\mathrm{Ni}(\mathrm{CO})_{4}(g)\) are \(-137.3 \mathrm{~kJ} / \mathrm{mol}\) and \(-587.4 \mathrm{~kJ} / \mathrm{mol}\), respectively, calculate the equilibrium constant of the reaction at \(80^{\circ} \mathrm{C}\). Assume that \(\Delta G_{f}^{\circ}\) is temperature independent.
A student placed \(1 \mathrm{~g}\) of each of three compounds \(\mathrm{A}\) \(\mathrm{B},\) and \(\mathrm{C}\) in a container and found that after 1 week no change had occurred. Offer some possible explanations for the fact that no reactions took place. Assume that \(\mathrm{A}, \mathrm{B},\) and \(\mathrm{C}\) are totally miscible liquids.
Find the temperatures at which reactions with the following \(\Delta H\) and \(\Delta S\) values would become spontaneous: (a) \(\Delta H=-126 \mathrm{~kJ} / \mathrm{mol}, \Delta S=84 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\) (b) \(\Delta H=-11.7 \mathrm{~kJ} / \mathrm{mol}, \Delta S=-105 \mathrm{~J} / \mathrm{K} \cdot \mathrm{mol}\).
The reaction \(\mathrm{NH}_{3}(g)+\mathrm{HCl}(g) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(s)\) proceeds spontaneously at \(25^{\circ} \mathrm{C}\) even though there is a decrease in the number of microstates of the system (gases are converted to a solid). Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.