Problem 27
Define solubility, molar solubility, and solubility product. Explain the difference between solubility and the solubility product of a slightly soluble substance such as \(\mathrm{BaSO}_{4}\) .
Problem 28
Why do we usually not quote the \(K_{\text {sp }}\) values for soluble ionic compounds?
Problem 29
Write balanced equations and solubility product expressions for the solubility equilibria of these compounds: (a) \(\mathrm{CuBr},\) (b) \(\mathrm{ZnC}_{2} \mathrm{O}_{4},\) (c) \(\mathrm{Ag}_{2} \mathrm{CrO}_{4}\) (d) \(\mathrm{Hg}_{2} \mathrm{Cl}_{2}\) (e) \(\mathrm{AuCl}_{3}\) (f) \(\mathrm{Mn}_{3}\left(\mathrm{PO}_{4}\right)_{2}\).
Problem 30
Write the solubility product expression for the ionic compound \(\mathrm{A}_{x} \mathrm{~B}_{y}\).
Problem 31
How can we predict whether a precipitate will form when two solutions are mixed?
Problem 33
Calculate the concentration of ions in these saturated solutions: (a) \(\left[\mathrm{I}^{-}\right]\) in AgI solution with \(\left[\mathrm{Ag}^{+}\right]=9.1 \times 10^{-9} \mathrm{M}\) (b) \(\left[\mathrm{Al}^{3+}\right]\) in \(\mathrm{Al}(\mathrm{OH})_{3}\) with \(\left[\mathrm{OH}^{-}\right]=2.9 \times 10^{-9} \mathrm{M}\)
Problem 35
The molar solubility of \(\mathrm{MnCO}_{3}\) is \(4.2 \times 10^{-6} \mathrm{M}\). What is \(K_{\mathrm{sp}}\) for this compound?
Problem 41
A sample of \(20.0 \mathrm{~mL}\) of \(0.10 \mathrm{MBa}\left(\mathrm{NO}_{3}\right)_{2}\) is added to \(50.0 \mathrm{~mL}\) of \(0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}\). Will \(\mathrm{BaCO}_{3}\) precipitate?
Problem 42
A volume of \(75 \mathrm{~mL}\) of \(0.060 \mathrm{M} \mathrm{NaF}\) is mixed with \(25 \mathrm{~mL}\) of \(0.15 \mathrm{M} \mathrm{Sr}\left(\mathrm{NO}_{3}\right)_{2} .\) Calculate the concentra- tions in the final solution of \(\mathrm{NO}_{3}^{-}, \mathrm{Na}^{+}, \mathrm{Sr}^{2+},\) and \(\mathrm{F}^{-} \cdot\left(K_{\mathrm{sp}}\right.\) for \(\left.\mathrm{SrF}_{2}=2.0 \times 10^{-10} \mathrm{.}\right)\)
Problem 43
How does a common ion affect solubility? Use Le Châtelier's principle to explain the decrease in solubility of \(\mathrm{CaCO}_{3}\) in a \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) solution.