Chapter 15: Problem 1
Define equilibrium. Give two examples of a dynamic equilibrium.
Chapter 15: Problem 1
Define equilibrium. Give two examples of a dynamic equilibrium.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider this reaction at equilibrium in a closed container: $$ \mathrm{CaCO}_{3}(s) \rightleftharpoons \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) $$ What would happen if (a) the volume is increased, (b) some \(\mathrm{CaO}\) is added to the mixture, (c) some \(\mathrm{CaCO}_{3}\) is removed, (d) some \(\mathrm{CO}_{2}\) is added to the mixture, (e) a few drops of an \(\mathrm{NaOH}\) solution are added to the mixture, (f) a few drops of an \(\mathrm{HCl}\) solution are added to the mixture (ignore the reaction between \(\mathrm{CO}_{2}\) and water \(),(\mathrm{g})\) the temperature is increased?
Consider the heterogeneous equilibrium process: $$ \mathrm{C}(s)+\mathrm{CO}_{2}(g) \rightleftharpoons 2 \mathrm{CO}(g) $$ At \(700^{\circ} \mathrm{C}\), the total pressure of the system is found to be 4.50 atm. If the equilibrium constant \(K_{P}\) is 1.52 , calculate the equilibrium partial pressures of \(\mathrm{CO}_{2}\) and \(\mathrm{CO}\)
Explain the difference between physical equilibrium and chemical equilibrium. Give two examples of each.
Write the expressions for the equilibrium constants \(K_{P}\) of these thermal decompositions: (a) \(2 \mathrm{NaHCO}_{3}(s) \rightleftharpoons \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)\) (b) \(2 \mathrm{CaSO}_{4}(s) \rightleftharpoons 2 \mathrm{CaO}(s)+2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g)\)
The decomposition of ammonium hydrogen sulfide $$ \mathrm{NH}_{4} \mathrm{HS}(s) \rightleftharpoons \mathrm{NH}_{3}(g)+\mathrm{H}_{2} \mathrm{~S}(g) $$ is an endothermic process. A \(6.1589-\mathrm{g}\) sample of the solid is placed in an evacuated 4.000 - \(L\) vessel at exactly \(24^{\circ} \mathrm{C}\). After equilibrium has been established, the total pressure inside is \(0.709 \mathrm{~atm}\). Some solid \(\mathrm{NH}_{4} \mathrm{HS}\) remains in the vessel. (a) What is the \(K_{P}\) for the reaction? (b) What percentage of the solid has decomposed? (c) If the volume of the vessel were doubled at constant temperature, what would happen to the amount of solid in the vessel?
What do you think about this solution?
We value your feedback to improve our textbook solutions.