Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 63

When heated, ammonium carbamate decomposes as $$ \mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{NH}_{2}(s) \rightleftharpoons 2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) $$ At a certain temperature the equilibrium pressure of the system is 0.318 atm. Calculate \(K_{P}\) for the reaction.

Problem 64

A mixture of 0.47 mole of \(H_{2}\) and 3.59 moles of \(H C l\) is heated to \(2800^{\circ} \mathrm{C}\). Calculate the equilibrium partial pressures of \(\mathrm{H}_{2}, \mathrm{Cl}_{2}\), and \(\mathrm{HCl}\) if the total pressure is 2.00 atm. The \(K_{P}\) for the reaction \(\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{HCl}(g)\) is 193 at \(2800^{\circ} \mathrm{C}.\)

Problem 65

Consider the reaction in a closed container: $$ \mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g) $$ Initially, 1 mole of \(\mathrm{N}_{2} \mathrm{O}_{4}\) is present. At equilibrium, \(\alpha\) mole of \(\mathrm{N}_{2} \mathrm{O}_{4}\) has dissociated to form \(\mathrm{NO}_{2}\). (a) Derive an expression for \(K_{P}\) in terms of \(\alpha\) and \(P,\) the total pressure. (b) How does the expression in (a) help you predict the shift in equilibrium caused by an increase in \(P ?\) Does your prediction agree with Le Châtelier's principle?

Problem 66

One mole of \(\mathrm{N}_{2}\) and 3 moles of \(\mathrm{H}_{2}\) are placed in a flask at \(397^{\circ} \mathrm{C}\). Calculate the total pressure of the system at equilibrium if the mole fraction of \(\mathrm{NH}_{3}\) is found to be 0.21. The \(K_{p}\) for the reaction is \(4.31 \times 10^{-4}.\)

Problem 67

At \(1130^{\circ} \mathrm{C}\) the equilibrium constant \(\left(K_{\mathrm{c}}\right)\) for the reaction $$ 2 \mathrm{H}_{2} \mathrm{~S}(g) \rightleftharpoons 2 \mathrm{H}_{2}(g)+\mathrm{S}_{2}(g) $$ is \(2.25 \times 10^{-4}\). If \(\left[\mathrm{H}_{2} \mathrm{~S}\right]=4.84 \times 10^{-3} \mathrm{M}\) and \(\left[\mathrm{H}_{2}\right]=\) \(1.50 \times 10^{-3} M,\) calculate \(\left[\mathrm{S}_{2}\right].\)

Problem 68

A quantity of \(6.75 \mathrm{~g}\) of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) was placed in a 2.00 -L flask. At \(648 \mathrm{~K}\), there is 0.0345 mole of \(\mathrm{SO}_{2}\) present. Calculate \(K_{\mathrm{c}}\) for the reaction $$ \mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g) $$

Problem 69

The formation of \(\mathrm{SO}_{3}\) from \(\mathrm{SO}_{2}\) and \(\mathrm{O}_{2}\) is an intermediate step in the manufacture of sulfuric acid, andit is also responsible for the acid rain phenomenon. The equilibrium constant \(\left(K_{P}\right)\) for the reaction $$ 2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g) $$ is 0.13 at \(830^{\circ} \mathrm{C}\). In one experiment 2.00 moles of \(\mathrm{SO}_{2}\) and 2.00 moles of \(\mathrm{O}_{2}\) were initially present in a flask. What must the total pressure be at equilibrium to have an 80.0 percent yield of \(\mathrm{SO}_{3} ?\)

Problem 70

Consider the dissociation of iodine: $$ \mathrm{I}_{2}(g) \rightleftharpoons 2 \mathrm{I}(g) $$ A \(1.00-\mathrm{g}\) sample of \(\mathrm{I}_{2}\) is heated at \(1200^{\circ} \mathrm{C}\) in a 500 -mL flask. At equilibrium the total pressure is 1.51 atm. Calculate \(K_{P}\) for the reaction. [Hint: Use the result in problem \(15.65(\mathrm{a}) .\) The degree of dissociation \(\alpha\) can be obtained by first calculating the ratio of observed pressure over calculated pressure, assuming no dissociation.

Problem 71

Eggshells are composed mostly of calcium carbonate \(\left(\mathrm{CaCO}_{3}\right)\) formed by the reaction $$ \mathrm{Ca}^{2+}(a q)+\mathrm{CO}_{3}^{2-}(a q) \rightleftharpoons \mathrm{CaCO}_{3}(s) $$ The carbonate ions are supplied by carbon dioxide produced as a result of metabolism. Explain why eggshells are thinner in the summer, when the rate of chicken panting is greater. Suggest a remedy for this situation.

Problem 72

The equilibrium constant \(K_{P}\) for the following reaction is found to be \(4.31 \times 10^{-4}\) at \(375^{\circ} \mathrm{C}\) : $$ \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) $$ In a certain experiment a student starts with 0.862 atm of \(\mathrm{N}_{2}\) and 0.373 atm of \(\mathrm{H}_{2}\) in a constant-volume vessel at \(375^{\circ} \mathrm{C}\). Calculate the partial pressures of all species when equilibrium is reached.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks