Chapter 14: Problem 78
A certain first-order reaction is 35.5 percent complete in 4.90 min at \(25^{\circ} \mathrm{C}\). What is its rate constant?
Chapter 14: Problem 78
A certain first-order reaction is 35.5 percent complete in 4.90 min at \(25^{\circ} \mathrm{C}\). What is its rate constant?
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain what is meant by the rate law of a reaction.
The rate law for the reaction $$ \mathrm{NH}_{4}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ is given by rate \(=k\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]\). At \(25^{\circ} \mathrm{C},\) the rate constant is \(3.0 \times 10^{-4} / M \cdot\) s. Calculate the rate of the reaction at this temperature if \(\left[\mathrm{NH}_{4}^{+}\right]=0.26 \mathrm{M}\) and \(\left[\mathrm{NO}_{2}^{-}\right]=0.080 \mathrm{M}\)
What is meant by the order of a reaction?
To carry out metabolism, oxygen is taken up by hemoglobin (Hb) to form oxyhemoglobin \(\left(\mathrm{HbO}_{2}\right)\) according to the simplified equation $$ \mathrm{Hb}(a q)+\mathrm{O}_{2}(a q) \stackrel{k}{\longrightarrow} \mathrm{HbO}_{2}(a q) $$ where the second-order rate constant is \(2.1 \times\) \(10^{6} / M \cdot \mathrm{s}\) at \(37^{\circ} \mathrm{C}\). (The reaction is first order in \(\mathrm{Hb}\) and \(\mathrm{O}_{2} .\) ) For an average adult, the concentrations of \(\mathrm{Hb}\) and \(\mathrm{O}_{2}\) in the blood at the lungs are \(8.0 \times 10^{-6} M\) and \(1.5 \times 10^{-6} M,\) respectively. (a) Calculate the rate of formation of \(\mathrm{HbO}_{2}\). (b) Calculate the rate of consumption of \(\mathrm{O}_{2}\). (c) The rate of formation of \(\mathrm{HbO}_{2}\) increases to \(1.4 \times 10^{-4} \mathrm{M} / \mathrm{s}\) during exercise to meet the demand of increased metabolism rate. Assuming the Hb concentration to remain the same, what must be the oxygen concentration to sustain this rate of \(\mathrm{HbO}_{2}\) formation?
Strontium-90, a radioactive isotope, is a major product of an atomic bomb explosion. It has a half-life of 28.1 yr. (a) Calculate the first-order rate constant for the nuclear decay. (b) Calculate the fraction of \({ }^{90} \mathrm{Sr}\) that remains after 10 half-lives. (c) Calculate the number of years required for 99.0 percent of \({ }^{90} \mathrm{Sr}\) to disappear.
What do you think about this solution?
We value your feedback to improve our textbook solutions.