Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

A certain first-order reaction is 35.5 percent complete in 4.90 min at \(25^{\circ} \mathrm{C}\). What is its rate constant?

Short Answer

Expert verified
The rate constant (k) is obtained by solving the equation with the given values, which is generally in the units of 1/s for first-order reactions. Remember to change the time to seconds for meaningful comparison and standard analysis in chemistry.

Step by step solution

01

Identifying given values

First, identify the known values from the given problem. Here, it is given that the reaction is 35.5 percent complete, which in fraction amounts to 0.355 (X = 0.355). The time it takes for the reaction to reach this point is 4.90 minutes (t = 4.90).
02

Converting time to appropriate unit

It is generally accepted to have the rate constant k in units of 1/s for first-order reactions. So, convert the given time from minutes to seconds. That is, \( t = 4.90 \times 60 = 294 \) seconds.
03

Solving for rate constant (k)

Substitute these values back into the equation \( k = \frac{-\ln(1-X)}{t} \). You will get \( k = \frac{-\ln(1-0.355)}{294} \). Solving the above equation will yield a numerical value for k.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Explain what is meant by the rate law of a reaction.

The rate law for the reaction $$ \mathrm{NH}_{4}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ is given by rate \(=k\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{NO}_{2}^{-}\right]\). At \(25^{\circ} \mathrm{C},\) the rate constant is \(3.0 \times 10^{-4} / M \cdot\) s. Calculate the rate of the reaction at this temperature if \(\left[\mathrm{NH}_{4}^{+}\right]=0.26 \mathrm{M}\) and \(\left[\mathrm{NO}_{2}^{-}\right]=0.080 \mathrm{M}\)

What is meant by the order of a reaction?

To carry out metabolism, oxygen is taken up by hemoglobin (Hb) to form oxyhemoglobin \(\left(\mathrm{HbO}_{2}\right)\) according to the simplified equation $$ \mathrm{Hb}(a q)+\mathrm{O}_{2}(a q) \stackrel{k}{\longrightarrow} \mathrm{HbO}_{2}(a q) $$ where the second-order rate constant is \(2.1 \times\) \(10^{6} / M \cdot \mathrm{s}\) at \(37^{\circ} \mathrm{C}\). (The reaction is first order in \(\mathrm{Hb}\) and \(\mathrm{O}_{2} .\) ) For an average adult, the concentrations of \(\mathrm{Hb}\) and \(\mathrm{O}_{2}\) in the blood at the lungs are \(8.0 \times 10^{-6} M\) and \(1.5 \times 10^{-6} M,\) respectively. (a) Calculate the rate of formation of \(\mathrm{HbO}_{2}\). (b) Calculate the rate of consumption of \(\mathrm{O}_{2}\). (c) The rate of formation of \(\mathrm{HbO}_{2}\) increases to \(1.4 \times 10^{-4} \mathrm{M} / \mathrm{s}\) during exercise to meet the demand of increased metabolism rate. Assuming the Hb concentration to remain the same, what must be the oxygen concentration to sustain this rate of \(\mathrm{HbO}_{2}\) formation?

Strontium-90, a radioactive isotope, is a major product of an atomic bomb explosion. It has a half-life of 28.1 yr. (a) Calculate the first-order rate constant for the nuclear decay. (b) Calculate the fraction of \({ }^{90} \mathrm{Sr}\) that remains after 10 half-lives. (c) Calculate the number of years required for 99.0 percent of \({ }^{90} \mathrm{Sr}\) to disappear.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free