Chapter 14: Problem 58
List four factors that influence the rate of a reaction.
Chapter 14: Problem 58
List four factors that influence the rate of a reaction.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen a mixture of methane and bromine is exposed to light, the following reaction occurs slowly: $$ \mathrm{CH}_{4}(g)+\mathrm{Br}_{2}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{Br}(g)+\mathrm{HBr}(g) $$ Suggest a reasonable mechanism for this reaction. (Hint: Bromine vapor is deep red; methane is colorless.)
Suggest experimental means by which the rates of the following reactions could be followed: (a) \(\mathrm{CaCO}_{3}(s) \longrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)\) (b) \(\mathrm{Cl}_{2}(g)+2 \mathrm{Br}^{-}(a q) \longrightarrow \mathrm{Br}_{2}(a q)+2 \mathrm{Cl}^{-}(a q)\) (c) \(\mathrm{C}_{2} \mathrm{H}_{6}(g) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g)\)
As we know, methane burns readily in oxygen in a highly exothermic reaction. Yet a mixture of methane and oxygen gas can be kept indefinitely without any apparent change. Explain.
The rate constant for the second-order reaction $$ 2 \mathrm{NO}_{2}(g) \longrightarrow 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) $$ is \(0.54 / M \cdot \mathrm{s}\) at \(300^{\circ} \mathrm{C}\). (a) How long (in seconds) would it take for the concentration of \(\mathrm{NO}_{2}\) to decrease from \(0.62 M\) to \(0.28 M ?\) (b) Calculate the half-lives at these two concentrations.
“The rate constant for the reaction $$ \mathrm{NO}_{2}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g) $$ is \(1.64 \times 10^{-6} / M \cdot \mathrm{s} .\)." What is incomplete about this statement?
What do you think about this solution?
We value your feedback to improve our textbook solutions.