Chapter 14: Problem 51
A certain reaction is known to proceed slowly at room temperature. Is it possible to make the reaction proceed at a faster rate without changing the temperature?
Chapter 14: Problem 51
A certain reaction is known to proceed slowly at room temperature. Is it possible to make the reaction proceed at a faster rate without changing the temperature?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the zero-order reaction \(\mathrm{A} \longrightarrow \mathrm{B}\). Sketch the following plots: (a) rate versus [A] and (b) [A] versus \(t\).
The reaction \(\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4}^{2-}+\mathrm{I}_{2}\) proceeds slowly in aqueous solution, but it can be catalyzed by the \(\mathrm{Fe}^{3+}\) ion. Given that \(\mathrm{Fe}^{3+}\) can oxidize \(\mathrm{I}^{-}\) and \(\mathrm{Fe}^{2+}\) can reduce \(\mathrm{S}_{2} \mathrm{O}_{8}^{2-},\) write a plausible two-step mechanism for this reaction. Explain why the uncatalyzed reaction is slow.
Are enzyme-catalyzed reactions examples of homogeneous or heterogeneous catalysis?
Given the same concentrations, the reaction $$ \mathrm{CO}(g)+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{COCl}_{2}(g) $$ at \(250^{\circ} \mathrm{C}\) is \(1.50 \times 10^{3}\) times as fast as the same reaction at \(150^{\circ} \mathrm{C}\). Calculate the energy of activation for this reaction. Assume that the frequency factor is constant.
The bromination of acetone is acid-catalyzed: \(\mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{Br}_{2} \frac{\mathrm{H}^{+}}{\text {catalyst }} \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}+\mathrm{H}^{+}+\mathrm{Br}\) The rate of disappearance of bromine was measured for several different concentrations of acetone, bromine, and \(\mathrm{H}^{+}\) ions at a certain temperature: $$ \begin{array}{lcllc} & & & & {\text { Rate of }} \\ & & & & \text { Disappearance } \\ & {\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]} & {\left[\mathrm{Br}_{2}\right]} & {\left[\mathrm{H}^{+}\right]} & \text {of } \mathrm{Br}_{2}(\mathrm{M} / \mathrm{s}) \\ \hline \text { (a) } & 0.30 & 0.050 & 0.050 & 5.7 \times 10^{-5} \\ \text {(b) } & 0.30 & 0.10 & 0.050 & 5.7 \times 10^{-5} \\ \text {(c) } & 0.30 & 0.050 & 0.10 & 1.2 \times 10^{-4} \\ \text {(d) } & 0.40 & 0.050 & 0.20 & 3.1 \times 10^{-4} \\ \text {(e) } & 0.40 & 0.050 & 0.050 & 7.6 \times 10^{-5} \end{array} $$ (a) What is the rate law for the reaction? (b) Determine the rate constant.
What do you think about this solution?
We value your feedback to improve our textbook solutions.