Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

What are the advantages of measuring the initial rate of a reaction?

Short Answer

Expert verified
The advantages of measuring the initial rate of a reaction include: 1) accurate determination of the reaction rate, 2) gaining insight into the reaction mechanism, and 3) enabling manipulation of reaction conditions for optimal results.

Step by step solution

01

Understanding the Concept

The initial rate of a reaction refers to the change in concentration of a reactant or a product per unit time at the start of the reaction - essentially, the speed at which a reaction proceeds when it just begins. This rate can be measured before the reaction reaches equilibrium.
02

Advantage 1: Accurate Determination of Reaction Rate

One advantage of measuring the initial rate of a reaction is that it leads to an accurate determination of the reaction rate. Since measurements are taken before the reaction starts to slow down due to depletion of reactants, it eliminates the influence of back reactions or side reactions.
03

Advantage 2: Insight into Reaction Mechanism

Measuring the initial rate of reaction helps to understand the reaction mechanism. It allows one to infer how reactants are transformed into products step-by-step by understanding the order of reaction, which can provide insight into the sequence of steps that make up the overall reaction.
04

Advantage 3: Enabling Manipulation of Reaction Conditions

Understanding the initial rate can enable scientists to manipulate the reaction conditions such as concentration of reactants, temperature etc., for desired speed and results. It aids in designing efficient industrial processes by optimizing reaction conditions for maximum yield at minimal cost.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A quantity of \(6 \mathrm{~g}\) of granulated \(\mathrm{Zn}\) is added to a solution of \(2 M \mathrm{HCl}\) in a beaker at room temperature. Hydrogen gas is generated. For each of the following changes (at constant volume of the acid) state whether the rate of hydrogen gas evolution will be increased, decreased, or unchanged: (a) \(6 \mathrm{~g}\) of powdered \(\mathrm{Zn}\) is used; \((\mathrm{b}) 4 \mathrm{~g}\) of granulated \(\mathrm{Zn}\) is used; \((\mathrm{c})\) \(2 M\) acetic acid is used instead of \(2 M \mathrm{HCl} ;\) d) temperature is raised to \(40^{\circ} \mathrm{C}\).

(a) What can you deduce about the activation energy of a reaction if its rate constant changes significantly with a small change in temperature? (b) If a bimolecular reaction occurs every time an A and a B molecule collide, what can you say about the orientation factor and activation energy of the reaction?

Sketch a potential-energy-versus-reaction-progress plot for the following reactions: $$ \begin{array}{l} \text { (a) } \mathrm{S}(s)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{SO}_{2}(g) \\ \Delta H^{\circ}=-296.06 \mathrm{~kJ} / \mathrm{mol} \\ \text { (b) } \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{Cl}(g)+\mathrm{Cl}(g) \\\ \Delta H^{\circ}=242.7 \mathrm{~kJ} / \mathrm{mol} \end{array} $$

In recent years ozone in the stratosphere has been depleted at an alarmingly fast rate by chlorofluorocarbons (CFCs). A CFC molecule such as \(\mathrm{CFCl}_{3}\) is first decomposed by UV radiation: $$ \mathrm{CFCl}_{3} \longrightarrow \mathrm{CFCl}_{2}+\mathrm{Cl} $$ The chlorine radical then reacts with ozone as follows: $$ \begin{array}{c} \mathrm{Cl}+\mathrm{O}_{3} \longrightarrow \mathrm{ClO}+\mathrm{O}_{2} \\ \mathrm{ClO}+\mathrm{O} \longrightarrow \mathrm{Cl}+\mathrm{O}_{2} \end{array} $$ (a) Write the overall reaction for the last two steps. (b) What are the roles of \(\mathrm{Cl}\) and \(\mathrm{ClO} ?\) (c) Why is the fluorine radical not important in this mechanism? (d) One suggestion to reduce the concentration of chlorine radicals is to add hydrocarbons such as ethane \(\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)\) to the stratosphere. How will this Work?

Explain why termolecular reactions are rare.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free