Chapter 14: Problem 104
To carry out metabolism, oxygen is taken up by hemoglobin (Hb) to form oxyhemoglobin \(\left(\mathrm{HbO}_{2}\right)\) according to the simplified equation $$ \mathrm{Hb}(a q)+\mathrm{O}_{2}(a q) \stackrel{k}{\longrightarrow} \mathrm{HbO}_{2}(a q) $$ where the second-order rate constant is \(2.1 \times\) \(10^{6} / M \cdot \mathrm{s}\) at \(37^{\circ} \mathrm{C}\). (The reaction is first order in \(\mathrm{Hb}\) and \(\mathrm{O}_{2} .\) ) For an average adult, the concentrations of \(\mathrm{Hb}\) and \(\mathrm{O}_{2}\) in the blood at the lungs are \(8.0 \times 10^{-6} M\) and \(1.5 \times 10^{-6} M,\) respectively. (a) Calculate the rate of formation of \(\mathrm{HbO}_{2}\). (b) Calculate the rate of consumption of \(\mathrm{O}_{2}\). (c) The rate of formation of \(\mathrm{HbO}_{2}\) increases to \(1.4 \times 10^{-4} \mathrm{M} / \mathrm{s}\) during exercise to meet the demand of increased metabolism rate. Assuming the Hb concentration to remain the same, what must be the oxygen concentration to sustain this rate of \(\mathrm{HbO}_{2}\) formation?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.