Chapter 14: Problem 1
What is meant by the rate of a chemical reaction?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 14: Problem 1
What is meant by the rate of a chemical reaction?
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe rate of the reaction $$ \begin{aligned} \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q) &+\mathrm{H}_{2} \mathrm{O}(l) \\ \longrightarrow & \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q) \end{aligned} $$ shows first-order characteristics-that is, rate \(=\) \(k\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\) - even though this is a second- order reaction (first order in \(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\) and first order in \(\mathrm{H}_{2} \mathrm{O}\) ). Explain.
The thermal decomposition of phosphine \(\left(\mathrm{PH}_{3}\right)\) into phosphorus and molecular hydrogen is a first-order reaction: $$ 4 \mathrm{PH}_{3}(g) \longrightarrow \mathrm{P}_{4}(g)+6 \mathrm{H}_{2}(g) $$ The half-life of the reaction is 35.0 s at \(680^{\circ} \mathrm{C}\). Calculate (a) the first-order rates constant for the reaction and (b) the time required for 95 percent of the phosphine to decompose.
Thallium(I) is oxidized by cerium(IV) as follows: $$ \mathrm{Tl}^{+}+2 \mathrm{Ce}^{4+} \longrightarrow \mathrm{Tl}^{3+}+2 \mathrm{Ce}^{3+} $$ The elementary steps, in the presence of \(\mathrm{Mn}(\mathrm{II}),\) are as follows: $$ \begin{aligned} \mathrm{Ce}^{4+}+\mathrm{Mn}^{2+} & \longrightarrow \mathrm{Ce}^{3+}+\mathrm{Mn}^{3+} \\ \mathrm{Ce}^{4+}+\mathrm{Mn}^{3+} \longrightarrow \mathrm{Ce}^{3+}+\mathrm{Mn}^{4+} \\ \mathrm{Tl}^{+}+\mathrm{Mn}^{4+} \longrightarrow \mathrm{Tl}^{3+}+\mathrm{Mn}^{2+} \end{aligned} $$ (a) Identify the catalyst, intermediates, and the ratedetermining step if the rate law is given by rate \(=\) \(k\left[\mathrm{Ce}^{4+}\right]\left[\mathrm{Mn}^{2+}\right]\) (b) Explain why the reaction is slow without the catalyst. (c) Classify the type of catalysis (homogeneous or heterogeneous).
Consider this elementary step: $$ X+2 Y \longrightarrow X Y_{2} $$ (a) Write a rate law for this reaction. (b) If the initial rate of formation of \(\mathrm{XY}_{2}\) is \(3.8 \times 10^{-3} \mathrm{M} / \mathrm{s}\) and the initial concentrations of \(X\) and \(Y\) are \(0.26 M\) and \(0.88 M\), what is the rate constant of the reaction?
The rate law for this reaction $$ \mathrm{CO}(g)+\mathrm{NO}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{NO}(g) $$ is rate \(=k\left[\mathrm{NO}_{2}\right]^{2}\). Suggest a plausible mechanism for the reaction, given that the unstable species \(\mathrm{NO}_{3}\) is an intermediate.
What do you think about this solution?
We value your feedback to improve our textbook solutions.