Chapter 7: Problem 17
The combustion of methane gas, the principal constituent of natural gas, is represented by the equation $$\begin{aligned} \mathrm{CH}_{4}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{g})+& 2 \mathrm{H}_{2} \mathrm{O}(1) \\ \Delta H^{\circ} &=-890.3 \mathrm{kJ} \end{aligned}$$ (a) What mass of methane, in kilograms, must be burned to liberate \(2.80 \times 10^{7} \mathrm{kJ}\) of heat? (b) What quantity of heat, in kilojoules, is liberated in the complete combustion of \(1.65 \times 10^{4} \mathrm{L}\) of \(\mathrm{CH}_{4}(\mathrm{g})\) measured at \(18.6^{\circ} \mathrm{C}\) and \(768 \mathrm{mmHg} ?\) (c) If the quantity of heat calculated in part (b) could be transferred with \(100 \%\) efficiency to water, what volume of water, in liters, could be heated from 8.8 to \(60.0^{\circ} \mathrm{C}\) as a result?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.