Chapter 6: Problem 127
In research that required the careful measurement of gas densities, John Rayleigh, a physicist, found that the density of \(\mathrm{O}_{2}(\mathrm{g})\) had the same value whether the gas was obtained from air or derived from one of its compounds. The situation with \(\mathrm{N}_{2}(\mathrm{g})\) was different, however. The density of \(\mathrm{N}_{2}(\mathrm{g})\) had the same value when the \(\mathrm{N}_{2}(\mathrm{g})\) was derived from any of various compounds, but a different value if the \(\mathrm{N}_{2}(\mathrm{g})\) was extracted from air. In \(1894,\) Rayleigh enlisted the aid of William Ramsay, a chemist, to solve this apparent mystery; in the course of their work they discovered the noble gases. (a) Why do you suppose that the \(\mathrm{N}_{2}(\mathrm{g})\) extracted from liquid air did not have the same density as \(\mathrm{N}_{2}(\mathrm{g})\) obtained from its compounds? (b) Which gas do you suppose had the greater density: \(\mathrm{N}_{2}(\mathrm{g})\) extracted from air or \(\mathrm{N}_{2}(\mathrm{g})\) prepared from nitrogen compounds? Explain. (c) The way in which Ramsay proved that nitrogen gas extracted from air was itself a mixture of gases involved allowing this nitrogen to react with magnesium metal to form magnesium nitride. Explain the significance of this experiment. (d) Calculate the percent difference in the densities at \(0.00^{\circ} \mathrm{C}\) and 1.00 atm of Rayleigh's \(\mathrm{N}_{2}(\mathrm{g})\) extracted from air and \(\mathrm{N}_{2}(\mathrm{g})\) derived from nitrogen compounds. [The volume percentages of the major components of air are \(78.084 \% \mathrm{N}_{2}, 20.946 \% \mathrm{O}_{2}, 0.934 \% \mathrm{Ar},\) and \(0.0379 \% \mathrm{CO}_{2} .\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.