Chapter 6: Problem 121
If the van der Waals equation is solved for volume, a cubic equation is obtained. (a) Derive the equation below by rearranging equation (6.26). \(V^{3}-n\left(\frac{R T+b P}{P}\right) V^{2}+\left(\frac{n^{2} a}{P}\right) V-\frac{n^{3} a b}{P}=0\) (b) What is the volume, in liters, occupied by \(185 \mathrm{g}\) \(\mathrm{CO}_{2}(\mathrm{g})\) at a pressure of \(125 \mathrm{atm}\) and \(286 \mathrm{K} ?\) For \(\mathrm{CO}_{2}(\mathrm{g})\) \(a=3.61 \mathrm{L}^{2} \mathrm{atm} \mathrm{mol}^{-2}\) and \(b=0.0429 \mathrm{Lmol}^{-1}\) [Hint: Use the ideal gas equation to obtain an estimate of the volume. Then refine your estimate, either by trial and error, or using the method of successive approximations. See Appendix A, pages A5-A6, for a description of the method of successive approximations.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.