Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

How many grams of sodium must react with \(155 \mathrm{mL}\) \(\mathrm{H}_{2} \mathrm{O}\) to produce a solution that is \(0.175 \mathrm{M} \mathrm{NaOH} ?\) (Assume a final solution volume of \(155 \mathrm{mL}\) ) $$ 2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{g}) $$

Short Answer

Expert verified
Around 0.624 grams of Sodium is required to produce a 0.175 M NaOH solution in 155 mL.

Step by step solution

01

Calculate moles of NaOH

In order to determine the amount of Sodium, the amount of moles of sodium hydroxide in the solution should firstly be calculated. The molarity of a solution is calculated by the number of moles of solute per liter of solution (M = moles/L). In this case, M = 0.175M and V = 155 mL = 0.155 L. Apply the formula \(Molarity = \frac{moles}{volume}\) to calculate moles. So, \(moles = Molarity \times Volume = 0.175 M \times 0.155 L = 0.0271 moles\) of NaOH.
02

Apply the stoichiometry from chemical equation

According to the balanced chemical equation, 2 moles of Na produce 2 moles of NaOH. Therefore, the moles of Na needed to produce 0.0271 moles of NaOH is also 0.0271 moles.
03

Calculate mass of Sodium

We know the molar mass of Hydrogen (Na) is about 23 g/mol. Therefore, the amount of Sodium needed is \(mass = moles \times molar mass = 0.0271 mol \times 23 g/mol = 0.624 g\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Molarity
Molarity is a crucial concept when dealing with solutions in chemistry. It represents the concentration of a solute in a solution. Understanding molarity is important for calculating the amount of substance dissolved in a specific volume of liquid.

To calculate molarity, use the formula \( \text{Molarity} = \frac{\text{moles of solute}}{\text{volume of solution in liters}} \). This form of concentration allows for the calculation of how substances interact in reactions. If you know the molarity along with the volume of your solution, you can determine the moles of solute present.

For instance, in our problem, with a molarity of 0.175 M and a solution volume of 0.155 L, you can calculate the moles of NaOH by multiplying them together, which results in 0.0271 moles of NaOH. This is a fundamental step in calculating how much of the initial substance, like sodium, is needed in a chemical reaction.
Sodium Reaction
Understanding sodium reactions, particularly with water, is key to grasping the stoichiometric calculations involved in the exercise. Sodium, a reactive metal, reacts with water to form sodium hydroxide (NaOH) and hydrogen gas (H2). This particular reaction is highly exothermic, meaning it releases a significant amount of energy in the form of heat.

The balanced chemical equation for the reaction is:
  • 2 Na(s) + 2 H2O(l) → 2 NaOH(aq) + H2(g)
In this equation, two moles of sodium react with two moles of water to produce two moles of sodium hydroxide and hydrogen gas. This indicates a one-to-one molar ratio between sodium and sodium hydroxide. Therefore, for any given amount of NaOH produced, the same number of moles of sodium is required.

In our scenario, since 0.0271 moles of NaOH are produced, you'll need an equivalent 0.0271 moles of sodium to complete the reaction.
Chemical Equations
Chemical equations represent the reactants and products in a chemical reaction. They reflect the conservation of mass and the relationship between reactants and products.

The equation needs to be balanced, showcasing an equal number of atoms for each element on both sides. This is fundamental for determining the stoichiometry, or the quantitative part of chemistry that deals with the proportional relationships between substances.

In our example, the balanced equation is:
  • 2 Na(s) + 2 H2O(l) → 2 NaOH(aq) + H2(g)
This tells us that the reaction occurs at a one-to-one molar ratio between sodium and sodium hydroxide. You can use this stoichiometric relationship to calculate how much of each substance you need or will produce.

In practice, knowing the balanced equation allows you to derive the amount of reactants needed to get a desired amount of product. Specifically, with the stoichiometry of 2:2:2 entries, you can predict that the NaOH produced is directly equivalent to the amount of Na used. These calculations ensure efficient and proper use of chemicals in reactions.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Baking soda, \(\mathrm{NaHCO}_{3}\), is made from soda ash, a common name for sodium carbonate. The soda ash is obtained in two ways. It can be manufactured in a process in which carbon dioxide, ammonia, sodium chloride, and water are the starting materials. Alternatively, it is mined as a mineral called trona (left photo). Whether the soda ash is mined or manufactured, it is dissolved in water and carbon dioxide is bubbled through the solution. Sodium bicarbonate precipitates from the solution. As a chemical analyst you are presented with two samples of sodium bicarbonate-one from the manufacturing process and the other derived from trona. You are asked to determine which is purer and are told that the impurity is sodium carbonate. You decide to treat the samples with just sufficient hydrochloric acid to convert all the sodium carbonate and bicarbonate to sodium chloride, carbon dioxide, and water. You then precipitate silver chloride in the reaction of sodium chloride with silver nitrate. A \(6.93 \mathrm{g}\) sample of baking soda derived from trona gave \(11.89 \mathrm{g}\) of silver chloride. A \(6.78 \mathrm{g}\) sample from manufactured sodium carbonate gave \(11.77 \mathrm{g}\) of silver chloride. Which sample is purer, that is, which has the greater mass percent \(\mathrm{NaHCO}_{3} ?\)

For a specific reaction, ammonium dichromate is the only reactant and chromium(III) oxide and water are two of the three products. What is the third product and how many grams of this product are produced per kilogram of ammonium dichromate decomposed?

An aqueous solution that is \(5.30 \%\) LiBr by mass has a density of \(1.040 \mathrm{g} / \mathrm{mL} .\) What is the molarity of this solution? (a) 0.563 M; (b) 0.635 M; (c) 0.0635 M; (d) \(0.0563 \mathrm{M} ;\) (e) \(12.0 \mathrm{M}\).

How many milligrams \(\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}\) must be present in \(50.0 \mathrm{L}\) of a solution containing \(2.35 \mathrm{ppm} \mathrm{Ca} ?\) [Hint: See also Exercise 103 .]

Suppose that reactions (a) and (b) each have a \(92 \%\) yield. Starting with \(112 \mathrm{g} \mathrm{CH}_{4}\) in reaction \((\mathrm{a})\) and an excess of \(\mathrm{Cl}_{2}(\mathrm{g}),\) how many grams of \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\) are formed in reaction (b)? (a) \(\mathrm{CH}_{4}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}\) (b) \(\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free