Chapter 4: Problem 22
The reaction of potassium superoxide, \(\mathrm{KO}_{2}\), is used in life- support systems to replace \(\mathrm{CO}_{2}(\mathrm{g})\) in expired air with \(\mathrm{O}_{2}(\mathrm{g}) .\) The unbalanced chemical equation for the reaction is given below. $$\mathrm{KO}_{2}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{g}) \longrightarrow \mathrm{K}_{2} \mathrm{CO}_{3}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{g})$$ (a) How many moles of \(\mathrm{O}_{2}(\mathrm{g})\) are produced by the reaction of \(156 \mathrm{g} \mathrm{CO}_{2}(\mathrm{g})\) with excess \(\mathrm{KO}_{2}(\mathrm{s}) ?\) (b) How many grams of \(\mathrm{KO}_{2}(\mathrm{s})\) are consumed per \(100.0 \mathrm{g} \mathrm{CO}_{2}(\mathrm{g})\) removed from expired air? (c) How many \(\mathrm{O}_{2}\) molecules are produced per milligram of \(\mathrm{KO}_{2}\) consumed?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.