Chapter 4: Problem 146
Nitric acid, \(\mathrm{HNO}_{3}\), can be manufactured from ammonia, \(\mathrm{NH}_{3}\), by using the three reactions shown below. $$\begin{aligned} &\text { Step 1: 4 NH }_{3}(\mathrm{g})+5 \mathrm{O}_{2}(\mathrm{g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\\\ &\text { Step 2: } 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{g})\\\ &\text { Step 3: } 3 \mathrm{NO}_{2}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NO}(\mathrm{g}) \end{aligned}$$ What is the maximum number of moles of \(\mathrm{HNO}_{3}\) that can be obtained from 4.00 moles of \(\mathrm{NH}_{3}\) ? (Assume that the NO produced in step 3 is not What is the maximum number of moles of \(\mathrm{HNO}_{3}\) that can be obtained from 4.00 moles of \(\mathrm{NH}_{3}\) ? (Assume that the NO produced in step 3 is not recycled back into step 2.) (a) 1.33 mol; (b) 2.00 mol; (c) 2.67 mol; (d) 4.00 mol; (e) 6.00 mol.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.