Chapter 25: Problem 74
Radioactive decay and mass spectrometry are often used to date rocks after they have cooled from a magma. \(^{87} \mathrm{Rb}\) has a half-life of \(4.8 \times 10^{10}\) years and follows the radioactive decay $$^{87} \mathrm{Rb} \longrightarrow^{87} \mathrm{Sr}+\beta^{-}$$ A rock was dated by assaying the product of this decay. The mass spectrum of a homogenized sample of rock showed the \(^{87} \mathrm{Sr} /^{86} \mathrm{Sr}\) ratio to be \(2.25 .\) Assume that the original \(^{87} \mathrm{Sr} /^{86} \mathrm{Sr}\) ratio was 0.700 when the rock cooled. Chemical analysis of the rock gave \(15.5 \mathrm{ppm}\) Sr and 265.4 ppm \(\mathrm{Rb},\) using the average atomic masses from a periodic table. The other isotope ratios were \(^{86} \mathrm{Sr} /^{88} \mathrm{Sr}=\) 0.119 and \(^{84} \mathrm{Sr} /^{88} \mathrm{Sr}=0.007 .\) The isotopic ratio for \(^{87} \mathrm{Rb} /^{85} \mathrm{Rb}\) is 0.330. The isotopic masses are as follows:Calculate the following: (a) the average atomic mass of Sr in the rock (b) the original concentration of \(\mathrm{Rb}\) in the rock in \(\mathrm{ppm}\) (c) the percentage of rubidium- 87 decayed in the rock (d) the time since the rock cooled.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.