Chapter 22: Problem 113
Figure \(15-1\) (page 656 ) shows that \(I_{2}\) is considerably more soluble in \(\mathrm{CCl}_{4}(1)\) than it is in \(\mathrm{H}_{2} \mathrm{O}(1) .\) The concentration of \(I_{2}\) in its saturated aqueous solution is \(1.33 \times 10^{-3} \mathrm{M},\) and the equilibrium achieved when \(\bar{I}_{2}\) distributes itself between \(\mathrm{H}_{2} \mathrm{O}\) and \(\mathrm{CCl}_{4}\) is $$\mathrm{I}_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{I}_{2}\left(\mathrm{CCl}_{4}\right) \quad K_{\mathrm{c}}=85.5$$ (a) \(\mathrm{A} 10.0 \mathrm{mL}\) sample of saturated \(\mathrm{I}_{2}(\mathrm{aq})\) is shaken with \(10.0 \mathrm{mL} \mathrm{CCl}_{4} .\) After equilibrium is established, the two liquid layers are separated. How many milligrams of \(I_{2}\) will be in the aqueous layer? (b) If the \(10.0 \mathrm{mL}\) of aqueous layer from part (a) is extracted with a second \(10.0 \mathrm{mL}\) portion of \(\mathrm{CCl}_{4}\) how many milligrams of \(\mathrm{I}_{2}\) will remain in the aqueous layer when equilibrium is reestablished? (c) If the 10.0 mL sample of saturated \(I_{2}(\) aq) in part (a) had originally been extracted with \(20.0 \mathrm{mL} \mathrm{CCl}_{4}\) would the mass of \(I_{2}\) remaining in the aqueous layer have been less than, equal to, or greater than that in part (b)? Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.