Chapter 20: Problem 100
Show that for a combination of half-cell reactions that produce a standard reduction potential for a half-cell that is not directly observable, the standard reduction potential is $$E^{\circ}=\frac{\sum n_{i} E_{i}^{\circ}}{\sum n_{i}}$$ where \(n_{i}\) is the number of electrons in each half-reaction of potential \(E_{i}^{\circ} .\) Use the following half-reactions: $$ \begin{array}{c} \mathrm{H}_{5} \mathrm{IO}_{6}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{IO}_{3}^{-}(\mathrm{aq})+ \\ 3 \mathrm{H}_{2} \mathrm{O}(1) \quad E^{\circ}=1.60 \mathrm{V} \\ \mathrm{IO}_{3}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \longrightarrow \frac{1}{2} \mathrm{I}_{2}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(1) \\ E^{\circ}=1.19 \mathrm{V} \\ 2 \mathrm{HIO}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{I}_{2}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(1) \\ E^{\circ}=1.45 \mathrm{V} \\ \mathrm{I}_{2}(\mathrm{s})+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{I}^{-}(\mathrm{aq}) \quad \quad E^{\circ}=0.535 \mathrm{V} \end{array} $$ Calculate the standard reduction potential for $$ \mathrm{H}_{6} \mathrm{IO}_{6}+5 \mathrm{H}^{+}+2 \mathrm{I}^{-}+3 \mathrm{e}^{-} \longrightarrow $$ $$ \frac{1}{2} \mathrm{I}_{2}+4 \mathrm{H}_{2} \mathrm{O}=2 \mathrm{HIO} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.