Chapter 19: Problem 95
In a heat engine, heat \(\left(q_{\mathrm{h}}\right)\) is absorbed by a working substance (such as water) at a high temperature \(\left(T_{\mathrm{h}}\right)\) Part of this heat is converted to work \((w),\) and the rest \(\left(q_{1}\right)\) is released to the surroundings at the lower temperature ( \(T_{1}\) ). The efficiency of a heat engine is the ratio \(w / q_{\mathrm{h}}\). The second law of thermodynamics establishes the following equation for the maximum efficiency of a heat engine, expressed on a percentage basis. $$\text { efficiency }=\frac{w}{q_{\mathrm{h}}} \times 100 \%=\frac{T_{\mathrm{h}}-T_{1}}{T_{\mathrm{h}}} \times 100 \%$$ In a particular electric power plant, the steam leaving a steam turbine is condensed to liquid water at \(41^{\circ} \mathrm{C}\left(T_{1}\right)\) and the water is returned to the boiler to be regenerated as steam. If the system operates at \(36 \%\) efficiency, (a) What is the minimum temperature of the steam \(\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]\) used in the plant? (b) Why is the actual steam temperature probably higher than that calculated in part (a)? (c) Assume that at \(T_{\mathrm{h}}\) the \(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\) is in equilibrium with \(\mathrm{H}_{2} \mathrm{O}(1) .\) Estimate the steam pressure at the temperature calculated in part (a). (d) Is it possible to devise a heat engine with greater than 100 percent efficiency? With 100 percent efficiency? Explain.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.