Chapter 19: Problem 27
The following standard Gibbs energy changes are given for \(25^{\circ} \mathrm{C}\) (1) \(\mathrm{N}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{g})\) \(\Delta G^{\circ}=-33.0 \mathrm{kJ}\) (2) \(4 \mathrm{NH}_{3}(\mathrm{g})+5 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(1)\) \(\Delta G^{\circ}=-1010.5 \mathrm{kJ}\) (3) \(\mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}(\mathrm{g})\) \(\Delta G^{\circ}=+173.1 \mathrm{kJ}\) (4) \(\mathrm{N}_{2}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{g})\) \(\Delta G^{\circ}=+102.6 \mathrm{kJ}\) (5) \(2 \mathrm{N}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{N}_{2} \mathrm{O}(\mathrm{g})\) \(\Delta G^{\circ}=+208.4 \mathrm{kJ}\) Combine the preceding equations, as necessary, to obtain \(\Delta G^{\circ}\) values for each of the following reactions. (a) \(\mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{g}) \quad \Delta G^{\circ}=?\) (b) \(2 \mathrm{H}_{2}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(1) \quad \Delta G^{\circ}=?\) (c) \(2 \mathrm{NH}_{3}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{g}) \longrightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}(1)\) \(\Delta G^{\circ}=?\) Of reactions (a), (b), and (c), which would tend to go to completion at \(25^{\circ} \mathrm{C}\), and which would reach an equilibrium condition with significant amounts of all reactants and products present?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.