Chapter 17: Problem 91
In 1922 Donald D. van Slyke ( J. Biol. Chem., 52, 525) defined a quantity known as the buffer index: \(\beta=\mathrm{d} C_{\mathrm{b}} / \mathrm{d}(\mathrm{pH}),\) where \(\mathrm{d} C_{\mathrm{b}}\) represents the increment of moles of strong base to one liter of the buffer. For the addition of a strong acid, he wrote \(\beta=-\mathrm{d} C_{\mathrm{a}} / \mathrm{d}(\mathrm{pH})\) By applying this idea to a monoprotic acid and its conjugate base, we can derive the following expression: \(\beta=2.303\left(\frac{K_{w}}{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\frac{\mathrm{CK}_{\mathrm{a}}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left(\mathrm{K}_{\mathrm{a}}+\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)^{2}}\right)\) where \(C\) is the total concentration of monoprotic acid and conjugate base. (a) Use the above expression to calculate the buffer index for the acetic acid buffer with a total acetic acid and acetate ion concentration of \(2.0 \times 10^{-2}\) and a \(\mathrm{pH}=5.0\) (b) Use the buffer index from part (a) and calculate the \(\mathrm{pH}\) of the buffer after the addition of of a strong acid. (Hint: Let \(\left.\mathrm{d} C_{\mathrm{a}} / \mathrm{d}(\mathrm{pH}) \approx \Delta C_{\mathrm{a}} / \Delta \mathrm{pH} .\right)\) (c) Make a plot of \(\beta\) versus \(\mathrm{pH}\) for a \(0.1 \mathrm{M}\) acetic acid buffer system. Locate the maximum buffer index as well as the minimum buffer indices.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.