Chapter 15: Problem 26
At \(2000 \mathrm{K}, K_{c}=0.154\) for the reaction \(2 \mathrm{CH}_{4}(\mathrm{g}) \rightleftharpoons\) \(\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{g}) .\) If a \(1.00 \mathrm{L}\) equilibrium mixture at \(2000 \mathrm{K}\) contains \(0.10 \mathrm{mol}\) each of \(\mathrm{CH}_{4}(\mathrm{g})\) and \(\mathrm{H}_{2}(\mathrm{g})\) (a) what is the mole fraction of \(\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{g})\) present? (b) Is the conversion of \(\mathrm{CH}_{4}(\mathrm{g})\) to \(\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{g})\) favored at high or low pressures? (c) If the equilibrium mixture at \(2000 \mathrm{K}\) is transferred from a 1.00 L flask to a 2.00 L flask, will the number of moles of \(\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{g})\) increase, decrease, or remain unchanged?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.