Chapter 15: Problem 108
The Deacon process for producing chlorine gas from hydrogen chloride is used in situations where \(\mathrm{HCl}\) is available as a by-product from other chemical processes. $$\begin{aligned} 4 \mathrm{HCl}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{g}) \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{Cl}_{2}(\mathrm{g}) & \\ \Delta H^{\circ}=&-114 \mathrm{kJ} \end{aligned}$$ A mixture of \(\mathrm{HCl}, \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O},\) and \(\mathrm{Cl}_{2}\) is brought to equilibrium at \(400^{\circ} \mathrm{C}\). What is the effect on the equilibrium amount of \(\mathrm{Cl}_{2}(\mathrm{g})\) if (a) additional \(\mathrm{O}_{2}(\mathrm{g})\) is added to the mixture at constant volume? (b) \(\mathrm{HCl}(\mathrm{g})\) is removed from the mixture at constant volume? (c) the mixture is transferred to a vessel of twice the volume? (d) a catalyst is added to the reaction mixture? (e) the temperature is raised to \(500^{\circ} \mathrm{C} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.