Chapter 14: Problem 89
The reaction \(A+B \longrightarrow\) products is first order in \(A\) first order in \(\mathrm{B},\) and second order overall. Consider that the starting concentrations of the reactants are \([\mathrm{A}]_{0}\) and [ \(\mathrm{B}]_{0},\) and that \(x\) represents the decrease in these concentrations at the time \(t .\) That is, \([\mathrm{A}]_{t}=[\mathrm{A}]_{0}-x\) and \([\mathrm{B}]_{t}=[\mathrm{B}]_{0}-x .\) Show that the integrated rate law for this reaction can be expressed as shown below. $$\ln \frac{[\mathrm{A}]_{0} \times[\mathrm{B}]_{t}}{[\mathrm{B}]_{0} \times[\mathrm{A}]_{t}}=\left([\mathrm{B}]_{0}-[\mathrm{A}]_{0}\right) \times k t$$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.