Chapter 14: Problem 24
The following first-order reaction occurs in \(\mathrm{CCl}_{4}(1)\) at \(45^{\circ} \mathrm{C}: \mathrm{N}_{2} \mathrm{O}_{5} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g}) .\) The rate constant is \(k=6.2 \times 10^{-4} \mathrm{s}^{-1} .\) An \(80.0 \mathrm{g}\) sample of \(\mathrm{N}_{2} \mathrm{O}_{5}\) in \(\mathrm{CCl}_{4}(\mathrm{l})\) is allowed to decompose at \(45^{\circ} \mathrm{C}.\) (a) How long does it take for the quantity of \(\mathrm{N}_{2} \mathrm{O}_{5}\) to be reduced to \(2.5 \mathrm{g} ?\) (b) How many liters of \(\mathrm{O}_{2},\) measured at \(745 \mathrm{mmHg}\) and \(45^{\circ} \mathrm{C},\) are produced up to this point?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.