Chapter 14: Problem 10
At \(65^{\circ} \mathrm{C}\), the half-life for the first-order decomposition of \(\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{g})\) is 2.38min. $$\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{g}) \longrightarrow 2 \mathrm{NO}_{2}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{g})$$ If \(1.00 \mathrm{g}\) of \(\mathrm{N}_{2} \mathrm{O}_{5}\) is introduced into an evacuated \(15 \mathrm{L}\) flask at \(65^{\circ} \mathrm{C}\) (a) What is the initial partial pressure, in \(\mathrm{mmHg}\), of \(\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{g}) ?\) (b) What is the partial pressure, in \(\mathrm{mmHg}\), of \(\mathrm{N}_{2} \mathrm{O}_{5}(\mathrm{g})\) after \(2.38 \mathrm{min} ?\) (c) What is the total gas pressure, in \(\mathrm{mm} \mathrm{Hg}\), after \(2.38 \mathrm{min} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.