Chapter 12: Problem 120
We have learned that the enthalpy of vaporization of a liquid is generally a function of temperature. If we wish to take this temperature variation into account, we cannot use the Clausius-Clapeyron equation in the form given in the text (that is, equation 12.2 ). Instead, we must go back to the differential equation upon which the Clausius-Clapeyron equation is based and reintegrate it into a new expression. Our starting point is the following equation describing the rate of change of vapor pressure with temperature in terms of the enthalpy of vaporization, the difference in molar volumes of the vapor \(\left(V_{g}\right),\) and liquid \(\left(V_{1}\right),\) and the temperature. $$\frac{d P}{d T}=\frac{\Delta H_{\mathrm{vap}}}{T\left(V_{\mathrm{g}}-V_{1}\right)}$$ Because in most cases the volume of one mole of vapor greatly exceeds the molar volume of liquid, we can treat the \(V_{1}\) term as if it were zero. Also, unless the vapor pressure is unusually high, we can treat the vapor as if it were an ideal gas; that is, for one mole of vapor, \(P V=R T\). Make appropriate substitutions into the above expression, and separate the \(P\) and \(d P\) terms from the \(T\) and \(d T\) terms. The appropriate substitution for \(\Delta H_{\text {vap }}\) means expressing it as a function of temperature. Finally, integrate the two sides of the equation between the limits \(P_{1}\) and \(P_{2}\) on one side and \(T_{1}\) and \(T_{2}\) on the other. (a) Derive an equation for the vapor pressure of \(\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{l})\) as a function of temperature, if \(\Delta H_{\mathrm{vap}}=\) \(15,971+14.55 T-0.160 T^{2}\left(\text { in } J m o l^{-1}\right)\) (b) Use the equation derived in (a), together with the fact that the vapor pressure of \(\mathrm{C}_{2} \mathrm{H}_{4}(1)\) at \(120 \mathrm{K}\) is 10.16 Torr, to determine the normal boiling point of ethylene.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.