Understanding how to measure volume, especially for irregularly shaped objects, is key to solving many chemical and physical problems. Volume can be thought of as the amount of space an object occupies. For regular shapes like cubes or spheres, we can use mathematical formulas to calculate their volume. However, for irregularly shaped objects, we often use a method involving the displacement of a liquid or rely on weight differences.
In this exercise, the vessel's volume was determined by filling it with a liquid and measuring the mass difference. By knowing the mass of the carbon tetrachloride added to the vessel and its known density, we can find the volume. This is possible because density is defined as mass per unit volume, and rearranging the density formula allows us to derive the volume.
The formula used in this context is:
This formula is crucial as it bridges the relationship between how heavy the liquid is and how much space it occupies.