Chapter 5: Problem 27
Gas Laws and Kinetic Theory of Gases I Shown here are two identical containers labeled \(\mathrm{A}\) and \(\mathrm{B}\). Container A contains a molecule of an ideal gas, and container B contains two molecules of an ideal gas. Both containers are at the same temperature. (Note that small numbers of molecules and atoms are being represented in these examples in order that you can easily compare the amounts. Real containers with so few molecules and atoms would be unlikely.) How do the pressures in the two containers compare? Be sure to explain your answer. Shown below are four different containers \((\mathrm{C}, \mathrm{D}, \mathrm{E}\) and \(\mathrm{F}\) ), each with the same volume and at the same temperature. How do the pressures of the gases in the containers compare? Container \(\mathrm{H}\) below has twice the volume of container G. How will the pressure in the containers compare? Explain your reasoning. How will the pressure of containers \(\mathrm{G}\) and \(\mathrm{H}\) compare if you add two more gas molecules to container \(\mathrm{H}\) ? Consider containers I and J below. Container J has twice the volume of container \(\mathrm{I}\). Container \(\mathrm{I}\) is at a temperature of \(100 \mathrm{~K},\) and container \(\mathrm{J}\) is at \(200 \mathrm{~K}\). How does the pressure in container I compare with that in container \(\mathrm{J} ?\) Include an explanation as part of your answer.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.