Chapter 14: Problem 52
Write stepwise chemical equations for protonation or deprotonation of each of these polyprotic acids and bases in water. (a) \(\mathrm{H}_{2} \mathrm{SO}_{3}\) (b) \(S^{2-}\) (c) \(\mathrm{NH}_{3} \mathrm{CH}_{3} \mathrm{COOH}^{+}\) (glycinium ion, a diprotic acid)
Short Answer
Expert verified
Protonation/deprotonation reactions involve sequential transfer of protons from polyprotic acids/bases to/from water, forming new species and hydronium or hydroxide ions.
Step by step solution
01
Identify the Nature of the Species
For each compound, first determine if it is an acid or a base and whether it can donate or accept more than one proton. Polyprotic acids can donate more than one proton, while polyprotic bases can accept more than one proton.
02
Write Protonation/Deprotonation Reactions for H₂SO₃
Hydrogen sulfite (\(\mathrm{H}_{2}\mathrm{SO}_{3}\)) is a diprotic acid, meaning it can donate two protons. - First deprotonation: \( \mathrm{H}_{2}\mathrm{SO}_{3} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{HSO}_{3}^{-} + \mathrm{H}_{3}\mathrm{O}^{+} \)- Second deprotonation: \( \mathrm{HSO}_{3}^{-} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{SO}_{3}^{2-} + \mathrm{H}_{3}\mathrm{O}^{+} \)
03
Write Protonation Reactions for S²⁻
The sulfide ion (\(S^{2-}\)) is a diprotic base, meaning it can accept two protons. - First protonation: \( S^{2-} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{SH}^{-} + \mathrm{OH}^{-} \)- Second protonation: \( \mathrm{SH}^{-} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{H}_2\mathrm{S} + \mathrm{OH}^{-} \)
04
Write Protonation/Deprotonation Reactions for NH₃CH₃COOH⁺
The glycinium ion (\(\mathrm{NH}_{3} \mathrm{CH}_{3} \mathrm{COOH}^{+}\)) is a diprotic acid and can donate two protons. - First deprotonation: \( \mathrm{NH}_{3} \mathrm{CH}_{3} \mathrm{COOH}^{+} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{NH}_{3} \mathrm{CH}_{3} \mathrm{COO} + \mathrm{H}_{3}\mathrm{O}^{+} \)- Second deprotonation: \( \mathrm{NH}_{3} \mathrm{CH}_{3} \mathrm{COO} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{NH}_{2} \mathrm{CH}_{3} \mathrm{COO}^{-} + \mathrm{H}_{3}\mathrm{O}^{+} \)
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Protonation and Deprotonation
The process of protonation involves the addition of a proton (H⁺), whereas deprotonation refers to the removal of a proton. In chemical terms, these are reversible processes. They occur in aqueous solutions to reach a state of equilibrium. Polyprotic acids and bases are special because they can undergo multiple protonation or deprotonation steps.
For instance, a diprotic acid like \(\mathrm{H}_2\mathrm{SO}_3\) can release two hydrogen ions. Protonation and deprotonation processes are essential as they affect a substance's pH and its chemical reactivity, impacting biological and industrial processes.
For instance, a diprotic acid like \(\mathrm{H}_2\mathrm{SO}_3\) can release two hydrogen ions. Protonation and deprotonation processes are essential as they affect a substance's pH and its chemical reactivity, impacting biological and industrial processes.
- Protonation results in the formation of conjugate acids.
- Deprotonation results in the formation of conjugate bases.
Chemical Equations
Chemical equations are the shorthand notations expressing chemical reactions. They demonstrate the transformation of reactants into products. Each equation must adhere to the law of conservation of mass, meaning the total mass of reactants equals the total mass of products.
In the context of protonation and deprotonation, balancing chemical equations involves ensuring the number of atoms and the charge are equal on both sides.
In the context of protonation and deprotonation, balancing chemical equations involves ensuring the number of atoms and the charge are equal on both sides.
- Reactants on the left
- Products on the right
- States of matter are often indicated (solid, liquid, gas, aqueous)
H2SO3 Reactions
Hydrogen sulfite, \(\mathrm{H}_2\mathrm{SO}_3\), is a diprotic acid and a classic example of a substance that undergoes two deprotonation steps. In water, it can donate two protons consecutively.
- First deprotonation: \( \mathrm{H}_2\mathrm{SO}_3 + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{HSO}_3^- + \mathrm{H}_3\mathrm{O}^+ \)
- Second deprotonation: \( \mathrm{HSO}_3^- + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{SO}_3^{2-} + \mathrm{H}_3\mathrm{O}^+ \)
S2- Reactions
The sulfide ion \(S^{2-}\) is a robust example of a diprotic base. Unlike acids, diprotic bases gain protons. In aqueous solutions, \(S^{2-}\) can absorb two protons sequentially.
- First protonation: \( S^{2-} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{SH}^- + \mathrm{OH}^- \)
- Second protonation: \( \mathrm{SH}^- + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{H}_2\mathrm{S} + \mathrm{OH}^- \)
Glycinium Ion Reactions
The glycinium ion, \(\mathrm{NH}_3\mathrm{CH}_3\mathrm{COOH}^+\), is intriguing because it is a diprotic acid. This means it has the potential to release two hydrogen ions in sequence.
- First deprotonation: \( \mathrm{NH}_3\mathrm{CH}_3\mathrm{COOH}^+ + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{NH}_3\mathrm{CH}_3\mathrm{COO} + \mathrm{H}_3\mathrm{O}^+ \)
- Second deprotonation: \( \mathrm{NH}_3\mathrm{CH}_3\mathrm{COO} + \mathrm{H}_2\mathrm{O} \rightarrow \mathrm{NH}_2\mathrm{CH}_3\mathrm{COO}^- + \mathrm{H}_3\mathrm{O}^+ \)