Chapter 7: Problem 79
The quantum-mechanical treatment of the hydrogen atom gives this expression for the wave function, \(\psi,\) of the \(1 s\) orbital: $$ \Psi=\frac{1}{\sqrt{\pi}}\left(\frac{1}{a_{0}}\right)^{3 / 2} e^{-r l a_{0}} $$ where \(r\) is the distance from the nucleus and \(a_{0}\) is \(52.92 \mathrm{pm}\). The probability of finding the electron in a tiny volume at distance \(r\) from the nucleus is proportional to \(\psi^{2}\). The total probability of finding the electron at all points at distance \(r\) from the nucleus is proportional to \(4 \pi r^{2} \psi^{2}\). Calculate the values (to three significant figures) of \(\psi, \psi^{2},\) and \(4 \pi r^{2} \psi^{2}\) to fill in the following table and sketch a plot of each set of values versus \(r .\) Compare the latter two plots with those in Figure \(7.17 \mathrm{~A}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.