Chapter 5: Problem 84
Naturally occurring uranium ore is \(0.7 \%\) by mass fissionable \({ }^{235} \mathrm{U}\) and \(99.3 \%\) by mass nonfissionable \({ }^{238} \mathrm{U}\). For its use as nuclear reactor fuel, the amount of \({ }^{235} \mathrm{U}\) must be increased relative to the amount of \({ }^{238} \mathrm{U}\). Uranium ore is treated with fluorine to yield a gaseous mixture of \({ }^{235} \mathrm{UF}_{6}\) and \({ }^{238} \mathrm{UF}_{6}\) that is pumped through a series of chambers separated by porous barriers; the lighter \({ }^{235} \mathrm{UF}_{6}\) molecules \((\mathscr{A}=349.03 \mathrm{~g} / \mathrm{mol}\) ) effuse through each barrier faster than molecules of \({ }^{238} \mathrm{UF}_{6}(\mathscr{A}=352.04 \mathrm{~g} / \mathrm{mol}),\) until the final mixture obtained is \(3-5 \%\) by mass \({ }^{235} \mathrm{UF}_{6} .\) This process generated \(33 \%\) of the world's enriched uranium in 2008 but has now been replaced with a less expensive centrifuge process. Calculate the ratio of the effusion rates of \({ }^{235} \mathrm{UF}_{6}\) to \({ }^{238} \mathrm{UF}_{6}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.