Chapter 5: Problem 135
In the \(19^{\text {th }}\) century, \(\mathrm{J}\). \(\mathrm{B}\). A. Dumas devised a method for finding the molar mass of a volatile liquid from the volume, temperature, pressure, and mass of its vapor. He placed a sample of such a liquid in a flask that was closed with a stopper fitted with a narrow tube, immersed the flask in a hot water bath to vaporize the liquid, and then cooled the flask. Find the molar mass of a volatile liquid from the following: Mass of empty flask \(=65.347 \mathrm{~g}\) Mass of flask filled with water at \(25^{\circ} \mathrm{C}=327.4 \mathrm{~g}\) Density of water at \(25^{\circ} \mathrm{C}=\) \(0.997 \mathrm{~g} / \mathrm{mL}\) Mass of flask plus condensed unknown liquid \(=65.739 \mathrm{~g}\) Barometric pressure \(=101.2 \mathrm{kPa}\) Temperature of water bath \(=99.8^{\circ} \mathrm{C}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.