Chapter 4: Problem 145
Over time, as their free fatty acid (FFA) content increases, edible fats and oils become rancid. To measure rancidity, the fat or oil is dissolved in ethanol, and any FFA present is titrated with KOH dissolved in ethanol. In a series of tests on olive oil, a stock solution of \(0.050 \mathrm{M}\) ethanolic \(\mathrm{KOH}\) was prepared at \(25^{\circ} \mathrm{C},\) stored at \(0^{\circ} \mathrm{C},\) and then placed in a \(100-\mathrm{mL}\) buret to titrate oleic acid [an FFA with formula \(\left.\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}=\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{COOH}\right]\) in the oil. Each of four \(10.00-\mathrm{g}\) samples of oil took several minutes to titrate: the first required \(19.60 \mathrm{~mL}\), the second \(19.80 \mathrm{~mL},\) and the third and fourth \(20.00 \mathrm{~mL}\) of the ethanolic \(\mathrm{KOH}\). (a) What is the apparent acidity of each sample, in terms of mass \(\%\) of oleic acid? (Note: As the ethanolic KOH warms in the buret, its volume increases by a factor of \(0.00104 /{ }^{\circ} \mathrm{C}\).) (b) Is the variation in acidity a random or systematic error? Explain. (c) What is the actual acidity? How would you demonstrate this?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.