Chapter 22: Problem 78
Even though most metal sulfides are sparingly soluble in water, their solubilities differ by several orders of magnitude. This difference is sometimes used to separate the metals by controlling the pH. Use the following data to find the pH at which you can separate \(0.10 M \mathrm{Cu}^{2+}\) and \(0.10 \mathrm{M} \mathrm{Ni}^{2+}\) Saturated \(\mathrm{H}_{2} \mathrm{~S}=0.10 \mathrm{M}\) \(K_{a t}\) of \(\mathrm{H}_{2} \mathrm{~S}=9 \times 10^{-8} \quad K_{a 2}\) of \(\mathrm{H}_{2} \mathrm{~S}=1 \times 10^{-17}\) \(K_{v}\) of NiS \(=1.1 \times 10^{-18} \quad K_{\mathrm{sp}}\) of \(\mathrm{CuS}=8 \times 10^{-34}\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.