The effect of substrate concentration on the first-order growth rate of a
microbial population follows the Monod equation: \(\mu=\frac{\mu_{\max }
S}{K_{\mathrm{s}}+S}\)
where \(\mu\) is the first-order growth rate \(\left(\mathrm{s}^{-1}\right),
\mu_{\max }\) is the maximum growth rate \(\left(\mathrm{s}^{-1}\right), S\) is
the substrate concentration \(\left(\mathrm{kg} / \mathrm{m}^{3}\right),\) and
\(K_{\mathrm{s}}\) is the value of \(S\) that gives one-half of the maximum growth
rate (in \(\mathrm{kg} / \mathrm{m}^{3}\) ). For \(\mu_{\max }=1.5 \times 10^{-4}
\mathrm{~s}^{-1}\) and \(K_{\mathrm{s}}=0.03 \mathrm{~kg} / \mathrm{m}^{3}\).
(a) Plot \(\mu\) vs. \(S\) for \(S\) between 0.0 and \(1.0 \mathrm{~kg} /
\mathrm{m}^{3}\).
(b) The initial population density is \(5.0 \times 10^{3}\) cells \(/
\mathrm{m}^{3}\). What is the density after \(1.0 \mathrm{~h}\), if the initial
\(S\) is \(0.30 \mathrm{~kg} / \mathrm{m}^{3} ?\)
(c) What is it if the initial \(S\) is \(0.70 \mathrm{~kg} / \mathrm{m}^{3}\) ?