Chapter 16: Problem 118
Heat transfer to and from a reaction flask is often a critical factor in controlling reaction rate. The heat transferred \((q)\) depends on a heat transfer coefficient \((h)\) for the flask material, the temperature difference \((\Delta T)\) across the flask wall, and the commonly "wetted" area (A) of the flask and bath: \(q=h A \Delta T\). When an exothermic reaction is run at a given \(T,\) there is a bath temperature at which the reaction can no longer be controlled, and the reaction "runs away" suddenly. A similar problem is often seen when a reaction is "scaled up" from, say, a half-filled small flask to a half-filled large flask. Explain these behaviors.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.